NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mejía-Ramos, Juan Pablo; Weber, Keith – ZDM: Mathematics Education, 2020
Mathematics education researchers frequently use task-based interviews to gain insight into mathematicians' practice. However, there are a number of factors that should prevent mathematics educators from extrapolating how individual mathematicians respond to researcher-generated tasks in laboratory conditions, to how mathematicians practice their…
Descriptors: Mathematics Education, Professional Personnel, Educational Research, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Keith; Mejia-Ramos, Juan Pablo – For the Learning of Mathematics, 2015
Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…
Descriptors: Mathematics Education, Educational Research, Mathematical Concepts, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Keith – International Journal of Mathematical Education in Science and Technology, 2012
In this article, nine mathematicians were interviewed about their why and how they presented proofs in their advanced mathematics courses. Key findings include that: (1) the participants in this study presented proofs not to convince students that theorems were true but for reasons such as conveying understanding and illustrating methods, (2)…
Descriptors: Mathematics Instruction, Validity, Mathematical Logic, Interviews
Peer reviewed Peer reviewed
Direct linkDirect link
Mejia-Ramos, Juan Pablo; Fuller, Evan; Weber, Keith; Rhoads, Kathryn; Samkoff, Aron – Educational Studies in Mathematics, 2012
Although proof comprehension is fundamental in advanced undergraduate mathematics courses, there has been limited research on what it means to understand a mathematical proof at this level and how such understanding can be assessed. In this paper, we address these issues by presenting a multidimensional model for assessing proof comprehension in…
Descriptors: Reading Comprehension, Mathematics Education, Mathematical Logic, Number Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Keith – For the Learning of Mathematics, 2010
Many mathematics educators have noted that mathematicians do not only read proofs to gain conviction but also to obtain insight. The goal of this article is to discuss what this insight is from mathematicians' perspective. Based on interviews with nine research-active mathematicians, two sources of insight are discussed. The first is reading a…
Descriptors: Mathematical Concepts, Mathematics Instruction, Mathematics Education, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Raman, Manya; Weber, Keith – Mathematics Teacher, 2006
This article describes how the concept of "key idea" can be used in high school geometry to connect students' informal explorations with rigorous mathematical proof. (Contains 6 figures.)
Descriptors: Geometry, Mathematical Logic, Validity, Mathematics Instruction
Weber, Keith – International Group for the Psychology of Mathematics Education, 2003
In this paper, I describe how undergraduates can develop their understanding of the concept of proof by viewing the act of proving as a procedure. Such undergraduates first understand proof as an algorithm, or a step-by-step mechanical prescription for proving certain types of statements. The students can then condense this algorithm into a…
Descriptors: Mathematics Instruction, Mathematical Logic, Validity, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Keith – Journal of Mathematical Behavior, 2005
In university mathematics courses, the activity of proof construction can be viewed as a problem-solving task in which the prover is asked to form a logical justification demonstrating that a given statement must be true. The purposes of this paper are to describe some of the different types of reasoning and problem-solving processes used by…
Descriptors: Problem Solving, Mathematics, College Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Keith; Alcock, Lara – Educational Studies in Mathematics, 2004
In this paper, we distinguish between two ways that an individual can construct a formal proof. We define a syntactic proof production to occur when the prover draws inferences by manipulating symbolic formulae in a logically permissible way. We define a semantic proof production to occur when the prover uses instantiations of mathematical…
Descriptors: Mathematical Logic, Validity, Mathematical Concepts, Case Studies
Weber, Keith – International Group for the Psychology of Mathematics Education, 2004
The purpose of this paper is to offer a framework for categorizing and describing the different types of processes that undergraduates use to construct proofs. Based on 176 observations of undergraduates constructing proofs collected over several studies, I describe three qualitatively different ways that undergraduates use to construct proofs. In…
Descriptors: Undergraduate Students, Cognitive Processes, Mathematics Skills, College Mathematics