Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 4 |
Descriptor
Bayesian Statistics | 4 |
Statistical Distributions | 4 |
Computation | 3 |
Longitudinal Studies | 3 |
Achievement Tests | 2 |
Children | 2 |
Mathematics Tests | 2 |
Models | 2 |
Monte Carlo Methods | 2 |
Robustness (Statistics) | 2 |
Surveys | 2 |
More ▼ |
Author
Zhang, Zhiyong | 4 |
Tong, Xin | 2 |
Grimm, Kevin J. | 1 |
Lai, Keke | 1 |
Liu, Haiyan | 1 |
Lu, Zhenqiu | 1 |
Publication Type
Reports - Research | 3 |
Journal Articles | 2 |
Reports - Descriptive | 1 |
Education Level
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
National Longitudinal Survey… | 2 |
Peabody Individual… | 2 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions