Publication Date
In 2025 | 8 |
Descriptor
Models | 6 |
Bayesian Statistics | 4 |
Sample Size | 4 |
Simulation | 4 |
Educational Assessment | 3 |
Evaluation Methods | 3 |
Item Analysis | 3 |
Item Response Theory | 3 |
Causal Models | 2 |
Comparative Analysis | 2 |
Computation | 2 |
More ▼ |
Source
Journal of Educational and… | 8 |
Author
Benjamin W. Domingue | 1 |
Chunying Qin | 1 |
Daniel McNeish | 1 |
Daoxuan Fu | 1 |
Jean-Paul Fox | 1 |
Jeffrey R. Harring | 1 |
Joshua B. Gilbert | 1 |
Kazuhiro Yamaguchi | 1 |
Luke W. Miratrix | 1 |
Mridul Joshi | 1 |
Na Shan | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 6 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 2 | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Daoxuan Fu; Chunying Qin; Zhaosheng Luo; Yujun Li; Xiaofeng Yu; Ziyu Ye – Journal of Educational and Behavioral Statistics, 2025
One of the central components of cognitive diagnostic assessment is the Q-matrix, which is an essential loading indicator matrix and is typically constructed by subject matter experts. Nonetheless, to a large extent, the construction of Q-matrix remains a subjective process and might lead to misspecifications. Many researchers have recognized the…
Descriptors: Q Methodology, Matrices, Diagnostic Tests, Cognitive Measurement
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Bayesian Adaptive Lasso for the Detection of Differential Item Functioning in Graded Response Models
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics