NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202564
Audience
Practitioners1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 64 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yusuf Uzun; Mehmet Kayrici – Journal of Education in Science, Environment and Health, 2025
In this study, which focuses on selecting the material and predicting its mechanical behaviors in materials science, an Artificial Neural Network (ANN) was used to predict and simulate the low-speed impact effects of hybrid nano-doped aramid composites. There are not enough studies about open education practices in this field. Since error values…
Descriptors: Artificial Intelligence, Open Education, Energy, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Julien Boelaert; Samuel Coavoux; Étienne Ollion; Ivaylo Petev; Patrick Präg – Sociological Methods & Research, 2025
Generative artificial intelligence (AI) is increasingly presented as a potential substitute for humans, including as research subjects. However, there is no scientific consensus on how closely these in silico clones can emulate survey respondents. While some defend the use of these "synthetic users," others point toward social biases in…
Descriptors: Artificial Intelligence, Models, Opinions, Surveys
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fabricio Trujillo; Marcelo Pozo; Gabriela Suntaxi – Journal of Technology and Science Education, 2025
This paper presents a systematic literature review of using Machine Learning (ML) techniques in higher education career recommendation. Despite the growing interest in leveraging Artificial Intelligence (AI) for personalized academic guidance, no previous reviews have synthesized the diverse methodologies in this field. Following the Kitchenham…
Descriptors: Artificial Intelligence, Higher Education, Career Guidance, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bernard J. Koch; Tim Sainburg; Pablo Geraldo Bastías; Song Jiang; Yizhou Sun; Jacob G. Foster – Sociological Methods & Research, 2025
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to…
Descriptors: Artificial Intelligence, Statistical Inference, Causal Models, Social Science Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zeynep Gül Dertli; Bahadir Yildiz – Anatolian Journal of Education, 2025
Mathematical modelling and modelling activities are important for making sense of mathematical concepts in different extracurricular and daily life contexts. However, teachers may have difficulties in designing these activities in a way to establish meaningful relationships with real life, in accordance with the modeling process and the objectives…
Descriptors: Prompting, Engineering, Mathematical Models, Mathematics Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Javad Keyhan – International Journal of Technology in Education and Science, 2025
In recent years, remarkable advancements in artificial intelligence technology have created new opportunities for transforming educational systems and enhancing student learning. This study focuses on designing a model for an AI-based intelligent assistant to provide a personalized learning experience in higher education. A qualitative approach…
Descriptors: Individualized Instruction, Artificial Intelligence, Models, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Vagelis Plevris – Journal of Civil Engineering Education, 2025
Forum papers are thought-provoking opinion pieces or essays founded in fact, sometimes containing speculation, on a civil engineering topic of general interest and relevance to the readership of the journal. The views expressed in this Forum article do not necessarily reflect the views of ASCE or the Editorial Board of the journal.
Descriptors: Civil Engineering, Engineering Education, Artificial Intelligence, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Nabila Khodeir; Fatma Elghannam – Education and Information Technologies, 2025
MOOC platforms provide a means of communication through forums, allowing learners to express their difficulties and challenges while studying various courses. Within these forums, some posts require urgent attention from instructors. Failing to respond promptly to these posts can contribute to higher dropout rates and lower course completion…
Descriptors: MOOCs, Computer Mediated Communication, Conferences (Gatherings), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Alex Lyman; Bryce Hepner; Lisa P. Argyle; Ethan C. Busby; Joshua R. Gubler; David Wingate – Sociological Methods & Research, 2025
Generative artificial intelligence (AI) has the potential to revolutionize social science research. However, researchers face the difficult challenge of choosing a specific AI model, often without social science-specific guidance. To demonstrate the importance of this choice, we present an evaluation of the effect of alignment, or human-driven…
Descriptors: Artificial Intelligence, Computer Simulation, Open Source Technology, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Todd Cherner; Teresa S. Foulger; Margaret Donnelly – TechTrends: Linking Research and Practice to Improve Learning, 2025
The ethics surrounding the development and deployment of generative artificial intelligence (genAI) is an important topic as institutions of higher education adopt the technology for educational purposes. Concurrently, stakeholders from various organizations have reviewed the literature about the ethics of genAI and proposed frameworks about it.…
Descriptors: Artificial Intelligence, Natural Language Processing, Decision Making, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hongfeng Zhang; Fanbo Li; Xiaolong Chen – Journal of Educational Computing Research, 2025
This study addresses the gap in understanding graduate students' sustained engagement behavior (SEB) with generative artificial intelligence (GAI) by integrating the Technology Acceptance Model (TAM), Expectation Confirmation Theory (ECT), and Theory of Reasoned Action (TRA) into a comprehensive embedding model. It introduces the Technology…
Descriptors: Graduate Students, Artificial Intelligence, Learner Engagement, Foreign Countries
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5