Publication Date
In 2025 | 7 |
Descriptor
Source
Education and Information… | 3 |
Educational Studies in… | 1 |
IEEE Transactions on Learning… | 1 |
International Journal of… | 1 |
Thresholds in Education | 1 |
Author
Anaelle Emma Gackiere | 1 |
Arzu Deveci Topal | 1 |
Asiye Toker Gokce | 1 |
Aynur Kolburan Geçer | 1 |
Benameur Ziani | 1 |
Bert Jonsson | 1 |
Canan Dilek Eren | 1 |
Daniel A. Guberman | 1 |
David B. Nelson | 1 |
Dawei Zhang | 1 |
Dongkun Han | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 5 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 7 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kheira Ouassif; Benameur Ziani – Education and Information Technologies, 2025
The integration of educational data mining and deep neural networks, along with the adoption of the Apriori algorithm for generating association rules, focuses to resolve the problem of misdirection of students in the university, leading to their failure and dropout. This is reached through the development of an intelligent model that predicts the…
Descriptors: Predictor Variables, College Students, Majors (Students), Decision Making
Mathias Norqvist; Bert Jonsson; Johan Lithner – Educational Studies in Mathematics, 2025
In mathematics classrooms, it is common practice to work through a series of comparable tasks provided in a textbook. A central question in mathematics education is if tasks should be accompanied with solution methods, or if students should construct the solutions themselves. To explore the impact of these two task designs on student behavior…
Descriptors: Attention, Algorithms, Creativity, Mathematics Education
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Asiye Toker Gokce; Arzu Deveci Topal; Aynur Kolburan Geçer; Canan Dilek Eren – Education and Information Technologies, 2025
Artificial intelligence (AI) literacy is critical to shaping students' academic experiences and future opportunities inhigher education. This study examines AI literacy among university students, examining variables such as gender, frequency of use of AI applications, completion of AI-related courses, and field of study. The research involved 664…
Descriptors: Artificial Intelligence, Technological Literacy, College Students, Decision Making
Dawei Zhang – International Journal of Web-Based Learning and Teaching Technologies, 2025
This article aims to study and implement a deep learning algorithm-based information literacy assistance system for college students to solve the problems of insufficient personalization and untimely feedback in the existing information literacy education methods, so as to improve the information literacy level of college students. This article…
Descriptors: College Students, Artificial Intelligence, Information Literacy, Problem Solving
Manuel B. Garcia – Education and Information Technologies, 2025
The global shortage of skilled programmers remains a persistent challenge. High dropout rates in introductory programming courses pose a significant obstacle to graduation. Previous studies highlighted learning difficulties in programming students, but their specific weaknesses remained unclear. This gap exists due to the predominant focus on the…
Descriptors: Programming, Introductory Courses, Computer Science Education, Mastery Learning
David B. Nelson; Anaelle Emma Gackiere; Samantha Elizabeth LeGrand; Daniel A. Guberman – Thresholds in Education, 2025
In response to the significant disruption posed by emergent AI technology, we propose a four part framework for teaching and learning practice and development. Rather than focus on the specific technologies of the moment, this framework provides actionable suggestions for individuals with varying views of AI and its positive and negative…
Descriptors: Teaching Methods, Learning Processes, Algorithms, Artificial Intelligence