NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Atharva Naik; Jessica Ruhan Yin; Anusha Kamath; Qianou Ma; Sherry Tongshuang Wu; R. Charles Murray; Christopher Bogart; Majd Sakr; Carolyn P. Rose – British Journal of Educational Technology, 2025
The relative effectiveness of reflection either through student generation of contrasting cases or through provided contrasting cases is not well-established for adult learners. This paper presents a classroom study to investigate this comparison in a college level Computer Science (CS) course where groups of students worked collaboratively to…
Descriptors: Cooperative Learning, Reflection, College Students, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Rui Wang; Haili Ling; Jie Chen; Huijuan Fu – International Journal of Distance Education Technologies, 2025
This study adopted the Latent Dirichlet Allocation (LDA) to extract learners' needs based on 70,145 reviews from online course designed for software design and development in China and then applied Quality Function Deployment (QFD) to map learners' differentiated needs into quality attributes. Taking national first-class courses as the…
Descriptors: Educational Improvement, Student Needs, Computer Science Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Dominic Lohr; Marc Berges; Abhishek Chugh; Michael Kohlhase; Dennis Müller – Journal of Computer Assisted Learning, 2025
Background: Over the past few decades, the process and methodology of automatic question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models…
Descriptors: Resource Units, Semantics, Automation, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Xieling Chen; Haoran Xie; S. Joe Qin; Fu Lee Wang; Yinan Hou – European Journal of Education, 2025
Artificial intelligence (AI) is increasingly exploited to promote student engagement. This study combined topic modelling, keyword analysis, trend test and systematic analysis methodologies to analyse AI-supported student engagement (AIsE) studies regarding research keywords and topics, AI roles, AI systems and algorithms, methods and domains,…
Descriptors: Artificial Intelligence, Learner Engagement, Technology Uses in Education, Electronic Learning
Sina Rismanchian; Eesha Tur Razia Babar; Shayan Doroudi – Annenberg Institute for School Reform at Brown University, 2025
In November 2022, OpenAI released ChatGPT, a groundbreaking generative AI chatbot backed by large language models (LLMs). Since then, these models have seen various applications in education, from Socratic tutoring and writing assistance to teacher training and essay scoring. Despite their widespread use among high school and college students in…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander Tobias Neumann; Yue Yin; Sulayman Sowe; Stefan Decker; Matthias Jarke – IEEE Transactions on Education, 2025
Contribution: This research explores the benefits and challenges of developing, deploying, and evaluating a large language model (LLM) chatbot, MoodleBot, in computer science classroom settings. It highlights the potential of integrating LLMs into LMSs like Moodle to support self-regulated learning (SRL) and help-seeking behavior. Background:…
Descriptors: Computer Science Education, Databases, Information Systems, Classroom Environment
Dorottya Demszky; Heather C. Hill; Eric S. Taylor; Ashlee Kupor; Deepak Varuvel Dennison; Chris Piech – Annenberg Institute for School Reform at Brown University, 2025
The role of teacher agency in professional learning has been the subject of several qualitative studies but has not yet been tested in an experimental setting. To provide causal evidence of the impact of teacher agency on the effectiveness of professional learning, we conducted a preregistered randomized controlled trial in an online computer…
Descriptors: Professional Autonomy, Faculty Development, Attribution Theory, Online Courses