NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gal Sasson Lazovsky; Tuval Raz; Yoed N. Kenett – Journal of Creative Behavior, 2025
As artificial intelligence and natural language processing methods rapidly develop, communication plays a pivotal role in every-day interactions. In this theoretical paper, we explore the overlap and commonalities between question-asking and prompt engineering. While seemingly distinct, these processes share a common foundation in essential skills…
Descriptors: Creativity, Questioning Techniques, Inquiry, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Dominic Lohr; Marc Berges; Abhishek Chugh; Michael Kohlhase; Dennis Müller – Journal of Computer Assisted Learning, 2025
Background: Over the past few decades, the process and methodology of automatic question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models…
Descriptors: Resource Units, Semantics, Automation, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Dabae Lee; Taekwon Son; Sheunghyun Yeo – Journal of Computer Assisted Learning, 2025
Background: Artificial Intelligence (AI) technologies offer unique capabilities for preservice teachers (PSTs) to engage in authentic and real-time interactions using natural language. However, the impact of AI technology on PSTs' responsive teaching skills remains uncertain. Objectives: The primary objective of this study is to examine whether…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Preservice Teachers