Publication Date
In 2025 | 3 |
Descriptor
Causal Models | 3 |
Statistical Bias | 3 |
Error of Measurement | 2 |
Randomized Controlled Trials | 2 |
Computation | 1 |
Data Collection | 1 |
Educational Research | 1 |
Graphs | 1 |
Intervention | 1 |
Least Squares Statistics | 1 |
Models | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Research | 2 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models