NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1469457
Record Type: Journal
Publication Date: 2025
Pages: 25
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2469-9896
Available Date: 0000-00-00
Affordances and Challenges of Incorporating a Remote, Cloud-Accessible Quantum Experiment into Undergraduate Courses
Physical Review Physics Education Research, v21 n1 Article 010133 2025
As quantum technologies transition from the research laboratory into commercial development, the opportunities for students to begin their careers in this new quantum industry are increasing. With these new career pathways, more and more people are considering the best ways to educate students about quantum concepts and relevant skills. In particular, the quantum industry is looking for new employees with experimental skills, but the instructional labs, capstone projects, research experiences, and internships that provide experiences where students can learn these skills are often resource intensive and not available at all institutions. The quantum company, Infleqtion, recently made its online quantum matter machine, Oqtant, publicly available, so people around the world could send commands to create and manipulate Bose-Einstein condensates and receive back real experimental data. Making a complex quantum experiment accessible to anyone has the potential to extend the opportunity to work with quantum experiments to students at less-resourced institutions. As a first step in understanding the potential benefits of using such a platform in educational settings, we collected data from instructors and students who were interested in using, or had used, Oqtant. In this study, we investigate instructors' views about reasons they would like to use Oqtant and the challenges they would face in doing so. We also provide a concrete example of how Oqtant was used in an upper-division undergraduate quantum mechanics course and the instructor's perception of its benefits. We complement this with the student perspective, discussing student experiences interacting with Oqtant in their course or through think-aloud interviews outside of a course. This allows us to investigate the reasons students perceive Oqtant to be a real experiment even though they never physically interact with it, how Oqtant compares to their other experimental experiences, and what they enjoy about working with it. These results will help the community consider the potential value of creating more opportunities for students to access remote quantum experiments.
American Physical Society. One Physics Ellipse 4th Floor, College Park, MD 20740-3844. Tel: 301-209-3200; Fax: 301-209-0865; e-mail: assocpub@aps.org; Web site: https://journals.aps.org/prper/
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Authoring Institution: N/A
Grant or Contract Numbers: 2317149; 2016244
Author Affiliations: N/A