Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 48 |
Descriptor
Source
Chemical Engineering Education | 48 |
Author
Falconer, John L. | 3 |
Barat, Robert | 2 |
Brauner, Neima | 2 |
Cutlip, Michael B. | 2 |
Luyben, William L. | 2 |
Shacham, Mordechai | 2 |
Abdel-Jabbar, Nabil | 1 |
Alger, Monty | 1 |
Ali, Emad | 1 |
Alnaizy, Raafat | 1 |
Argoti, A. | 1 |
More ▼ |
Publication Type
Journal Articles | 48 |
Reports - Descriptive | 29 |
Reports - Research | 12 |
Reports - Evaluative | 7 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 35 |
Postsecondary Education | 23 |
High Schools | 1 |
Secondary Education | 1 |
Location
Alabama | 1 |
Australia | 1 |
Canada | 1 |
Florida | 1 |
Iceland | 1 |
Kansas | 1 |
Missouri | 1 |
New York | 1 |
Oklahoma | 1 |
Spain | 1 |
Texas | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael P. Howard; Symone L. M. Alexander – Chemical Engineering Education, 2024
Chemical engineers must learn to connect concepts across vastly different scales, spanning from molecular structures to industrial processes. Here, we explore the use of a virtual-reality simulation with a companion video of an experiment to help undergraduate students connect nanoscale fundamentals to macroscale engineering observations.
Descriptors: Chemical Engineering, Computer Simulation, Video Technology, Science Experiments
Keisha C. A. Antoine; Lealon L. Martin; Jorge F. Gabitto – Chemical Engineering Education, 2024
In this paper we demonstrate that using mixed reality (MR) technology can innovate our chemical engineering laboratory curriculum at Prairie View A&M University, a Historically Black College/University (HBCU). Particularly, we describe the development of a MR proof of concept to carry out a traditional fluid mechanics lab -- pressure drop as a…
Descriptors: Science Instruction, Black Colleges, Chemical Engineering, Science Laboratories
Gómez Siurana, Amparo; Font Escamilla, Alicia – Chemical Engineering Education, 2022
Examples of applications of equilibrium-based methods for multicomponent separations usually require the use of simulation packages, which do not allow students to follow the involved algorithms step by step. Excel spreadsheets with examples of six such rigorous methods have been used with MSc students of Chemical Engineering of the University of…
Descriptors: Spreadsheets, Chemical Engineering, Graduate Students, Teaching Methods
English, Niall J. – Chemical Engineering Education, 2022
Molecular-, fluid- and field-dynamics simulation are becoming more mainstream tools for practicing process engineers; here, the academic community needs to pay close attention to "upskilling" demands from industry, where remote working/training emphasizes the need for sophisticated computational-engineering design tools with molecular…
Descriptors: Engineering Education, Skill Development, Computation, Design
Funkenbusch, LiLu Tian; Rivera-Jiménez, Sindia – Chemical Engineering Education, 2023
The continuous distillation experiment in the Unit Operations Lab was moved to a virtual platform. Students used old data and equipment specifications to simulate the column in Aspen HYSYS. Students experimented without the limitations of existing equipment. For example, they studied the number of trays in the virtual column, something that is…
Descriptors: Chemistry, Science Instruction, Feedback (Response), Student Attitudes
Roman, Claudia; Delgado, Miguel A.; Garcia-Morales, Moises – Chemical Engineering Education, 2021
The benefits of using Microsoft Excel built-in functions in an undergraduate Multistage Separations course are analyzed based on 15 years of experience teaching mass transfer in Chemical Engineering programs at both the Bachelor's and Master's levels. Eight reasons for using spreadsheets in a Mass Transfer virtual course are given. Through the…
Descriptors: Computation, Spreadsheets, Undergraduate Students, Engineering Education
Calfa, Bruno; Banholzer, William; Alger, Monty; Doherty, Michael – Chemical Engineering Education, 2017
This paper describes a web-based suite of simulation games that have the purpose to enhance the chemical engineering curriculum with business-oriented decisions. Two simulation cases are discussed whose teaching topics include closing material and energy balances, importance of recycle streams, price-volume relationship in a dynamic market, impact…
Descriptors: Computer Simulation, Chemical Engineering, Computer Games, Energy
Scholes, Colin A.; Hu, Guoping – Chemical Engineering Education, 2021
A practical for students to experience a process plant is presented, based on operating a solvent absorption plant for carbon dioxide capture. The student must operate the plant in assigned roles that closely identify with a chemical plant environment, to achieve specific performance targets. Students must overcome technical challenges that…
Descriptors: Chemical Engineering, Engineering Education, Facilities, Chemistry
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Shao, Michael; Shiflett, Mark B. – Chemical Engineering Education, 2021
Simulation software has experienced growing interest in chemical engineering curriculums for its usage in commercial engineering practices. This article describes the ASPEN Plus® version 10 (V10) simulations and a student teach students approach to integrate ASPEN in the chemical engineering curriculum at the University of Kansas (KU). Videos,…
Descriptors: Chemical Engineering, Teaching Methods, Computer Simulation, Computer Software
Gao, Jie; Crossley, Steven P.; Nollert, Matthias U.; Lobban, Lance L.; Papavassiliou, Dimitrios V. – Chemical Engineering Education, 2021
This paper reports an innovative, hybrid teaching model for a junior level lab course. This model leverages in-person lab operation by adding a student-led online learning mode. Both course outcomes and student outcomes were evaluated. Student feedback was collected, and its analysis showed both positive and negative impacts in this hybrid model.…
Descriptors: Pandemics, COVID-19, School Closing, Online Courses
Eastep, Carley V.; Harrell, Grace K.; McPeak, Alexandria N.; Versypt, Ashlee N. Ford – Chemical Engineering Education, 2019
An interactive MATLAB simulation app and design project are described for introducing chemical engineering concepts to engineering freshmen. A MATLAB simulation for pharmaceutical drug dosing is packaged with a graphical user interface in an app that is student friendly. Minimal engineering or coding knowledge is necessary to operate and…
Descriptors: College Freshmen, Chemical Engineering, Computer Uses in Education, Computer Oriented Programs
Nottis, Katharyn E. K.; Vigeant, Margot A.; Prince, Michael J.; Golightly, Amy Frances; Gadoury, Carrine Megan – Chemical Engineering Education, 2019
Heat and temperature concepts are found at all levels in the science curricula and are well-known for creating conceptual difficulties for learners. Students have difficulty understanding concepts related to heat, temperature, and thermal radiation. Inquiry-based pedagogies that can foster the learning of these difficult concepts are needed.…
Descriptors: Computer Simulation, Science Experiments, Heat, Active Learning
Park, Joontaek; Matejka, Elizabeth; Nelson, Alyssa K.; Rhodes, Jared A. – Chemical Engineering Education, 2018
A sample class project utilizing Excel spreadsheets to develop a flash drum simulator is demonstrated. In addition to solving equations for mole and enthalpy balances, students are trained to carry out vapor-liquid equilibrium calculations. More importantly, students gain a solid understanding of the link between hand calculations and simulator…
Descriptors: Spreadsheets, Class Activities, Chemical Engineering, Simulation
Jang, Larry K.; Lo, Roger C. – Chemical Engineering Education, 2015
The objective of this work is to present a spreadsheet tool that illustrates an ideal case of dynamic matrix control (DMC) calculations. The ideal case presented in this work is a hypothetical single- input-single-output DMC control system for setpoint tracking, in the absence of disturbance and mismatch between the measured and predicted process…
Descriptors: Undergraduate Students, Spreadsheets, Simulation, Matrices