Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 14 |
Descriptor
Predictor Variables | 14 |
Statistical Analysis | 6 |
Models | 4 |
Simulation | 4 |
Regression (Statistics) | 3 |
Research Methodology | 3 |
Classification | 2 |
Comparative Analysis | 2 |
Computation | 2 |
Decision Making | 2 |
Evaluation Research | 2 |
More ▼ |
Source
Psychological Methods | 14 |
Author
Publication Type
Journal Articles | 14 |
Reports - Descriptive | 5 |
Reports - Research | 5 |
Reports - Evaluative | 4 |
Education Level
Adult Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Widaman, Keith F.; Helm, Jonathan L.; Castro-Schilo, Laura; Pluess, Michael; Stallings, Michael C.; Belsky, Jay – Psychological Methods, 2012
Re-parameterized regression models may enable tests of crucial theoretical predictions involving interactive effects of predictors that cannot be tested directly using standard approaches. First, we present a re-parameterized regression model for the Linear x Linear interaction of 2 quantitative predictors that yields point and interval estimates…
Descriptors: Regression (Statistics), Predictor Variables, Models, Equations (Mathematics)
Preacher, Kristopher J.; Zyphur, Michael J.; Zhang, Zhen – Psychological Methods, 2010
Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover,…
Descriptors: Structural Equation Models, Hypothesis Testing, Statistical Analysis, Predictor Variables
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
DeCoster, Jamie; Iselin, Anne-Marie R.; Gallucci, Marcello – Psychological Methods, 2009
Despite many articles reporting the problems of dichotomizing continuous measures, researchers still commonly use this practice. The authors' purpose in this article was to understand the reasons that people still dichotomize and to determine whether any of these reasons are valid. They contacted 66 researchers who had published articles using…
Descriptors: Statistical Analysis, Classification, Monte Carlo Methods, Predictor Variables
Tonidandel, Scott; LeBreton, James M.; Johnson, Jeff W. – Psychological Methods, 2009
Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical significance of the relative weights. J. W. Johnson…
Descriptors: Multiple Regression Analysis, Statistical Significance, Statistical Inference, Bias
Collins, Linda M.; Dziak, John J.; Li, Runze – Psychological Methods, 2009
An investigator who plans to conduct an experiment with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy.…
Descriptors: Statistical Analysis, Behavioral Sciences, Social Sciences, Social Scientists
Strobl, Carolin; Malley, James; Tutz, Gerhard – Psychological Methods, 2009
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
Descriptors: Artificial Intelligence, Decision Making, Psychological Studies, Research Methodology
Croon, Marcel A.; van Veldhoven, Marc J. P. M. – Psychological Methods, 2007
In multilevel modeling, one often distinguishes between macro-micro and micro-macro situations. In a macro-micro multilevel situation, a dependent variable measured at the lower level is predicted or explained by variables measured at that lower or a higher level. In a micro-macro multilevel situation, a dependent variable defined at the higher…
Descriptors: Predictor Variables, Regression (Statistics), Item Response Theory, Models
Maydeu-Olivares, Alberto; Coffman, Donna L.; Hartmann, Wolfgang M. – Psychological Methods, 2007
The point estimate of sample coefficient alpha may provide a misleading impression of the reliability of the test score. Because sample coefficient alpha is consistently biased downward, it is more likely to yield a misleading impression of poor reliability. The magnitude of the bias is greatest precisely when the variability of sample alpha is…
Descriptors: Intervals, Scores, Sample Size, Simulation
Enders, Craig K.; Tofighi, Davood – Psychological Methods, 2007
Appropriately centering Level 1 predictors is vital to the interpretation of intercept and slope parameters in multilevel models (MLMs). The issue of centering has been discussed in the literature, but it is still widely misunderstood. The purpose of this article is to provide a detailed overview of grand mean centering and group mean centering in…
Descriptors: Predictor Variables, Item Response Theory, Statistical Analysis, Research
Schafer, Joseph L.; Kang, Joseph – Psychological Methods, 2008
In a well-designed experiment, random assignment of participants to treatments makes causal inference straightforward. However, if participants are not randomized (as in observational study, quasi-experiment, or nonequivalent control-group designs), group comparisons may be biased by confounders that influence both the outcome and the alleged…
Descriptors: Research Methodology, Inferences, Psychological Studies, Simulation
Le, Huy; Schmidt, Frank L. – Psychological Methods, 2006
Using computer simulation, the authors assessed the accuracy of J. E. Hunter, F. L. Schmidt, and H. Le's (2006) procedure for correcting for indirect range restriction, the most common type of range restriction, in comparison with the conventional practice of applying the Thorndike Case II correction for direct range restriction. Hunter et…
Descriptors: Computer Simulation, Predictor Variables, Correlation, Computation
Smithson, Michael; Verkuilen, Jay – Psychological Methods, 2006
Uncorrectable skew and heteroscedasticity are among the "lemons" of psychological data, yet many important variables naturally exhibit these properties. For scales with a lower and upper bound, a suitable candidate for models is the beta distribution, which is very flexible and models skew quite well. The authors present…
Descriptors: Maximum Likelihood Statistics, Predictor Variables, Mathematical Models, Comparative Analysis
Bauer, Daniel J.; Preacher, Kristopher J.; Gil, Karen M. – Psychological Methods, 2006
The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects.…
Descriptors: Testing, Models, Sampling, Context Effect