NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Heungsun Hwang; Gyeongcheol Cho; Hosung Choo – Structural Equation Modeling: A Multidisciplinary Journal, 2024
GSCA Pro is free, user-friendly software for generalized structured component analysis structural equation modeling (GSCA-SEM), which implements three statistical methods for estimating models with factors only, models with components only, and models with both factors and components. This tutorial aims to provide step-by-step illustrations of how…
Descriptors: Research Tools, Structural Equation Models, Computer Software, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Dayoung Lee; Guangjian Zhang; Shanhong Luo – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The circumplex model posits a circular representation of affect and some personality traits. There is an increasing need to examine the viability of the circumplex model with multivariate time series data collected on the same individuals due to the development of new data collection methods such as smartphone applications and wearable sensors.…
Descriptors: Research Methodology, Affective Measures, Family Relationship, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Christine DiStefano; Natalja Menold – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal…
Descriptors: Structural Equation Models, Hypothesis Testing, Longitudinal Studies, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Chi Kit Jacky Ng; Lok Yin Joyce Kwan; Wai Chan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In the past decade, moderated mediation analysis has been extensively and increasingly employed in social and behavioral sciences. With its widespread use, it is particularly important to ensure the moderated mediation analysis will not bring spurious results. Spurious effects have been studied in both mediation and moderation analysis, but this…
Descriptors: Mediation Theory, Social Sciences, Behavioral Sciences, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The primary objective of this investigation is the formulation of random intercept latent profile transition analysis (RI-LPTA). Our simulation investigation suggests that the election between LPTA and RI-LPTA for examination has negligible impact on the estimation of transition probability parameters when the population parameters are generated…
Descriptors: Monte Carlo Methods, Predictor Variables, Research Methodology, Test Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…
Descriptors: Structural Equation Models, Home Management, Drug Abuse, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Markus, Keith A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
Descriptors: Structural Equation Models, Behavioral Science Research, Research Methodology, Influences
Peer reviewed Peer reviewed
Direct linkDirect link
Maydeu-Olivares, Alberto; Cai, Li; Hernandez, Adolfo – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Linear factor analysis (FA) models can be reliably tested using test statistics based on residual covariances. We show that the same statistics can be used to reliably test the fit of item response theory (IRT) models for ordinal data (under some conditions). Hence, the fit of an FA model and of an IRT model to the same data set can now be…
Descriptors: Factor Analysis, Research Methodology, Statistics, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W. -L. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Meta-analysis is the statistical analysis of a collection of analysis results from individual studies, conducted for the purpose of integrating the findings. Structural equation modeling (SEM), on the other hand, is a multivariate technique for testing hypothetical models with latent and observed variables. This article shows that fixed-effects…
Descriptors: Structural Equation Models, Syntax, Effect Size, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Kim, Jee-Seon – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand…
Descriptors: Structural Equation Models, Data Analysis, Research Methodology, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Jones-Farmer, L. Allison – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When comparing latent variables among groups, it is important to first establish the equivalence or invariance of the measurement model across groups. Confirmatory factor analysis (CFA) is a commonly used methodological approach to examine measurement equivalence/invariance (ME/I). Within the CFA framework, the chi-square goodness-of-fit test and…
Descriptors: Factor Structure, Factor Analysis, Evaluation Research, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Mels, Gerhard – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A readily implemented procedure is discussed for interval estimation of indexes of interrelationship between items from multiple-component measuring instruments as well as between items and total composite scores. The method is applicable with categorical (ordinal) observed variables, and can be widely used in the process of scale construction,…
Descriptors: Intervals, Structural Equation Models, Biomedicine, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent missing data studies have argued in favor of an "inclusive analytic strategy" that incorporates auxiliary variables into the estimation routine, and Graham (2003) outlined methods for incorporating auxiliary variables into structural equation analyses. In practice, the auxiliary variables often have missing values, so it is reasonable to…
Descriptors: Structural Equation Models, Research Methodology, Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Muthen, Bengt O. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Factor mixture models are designed for the analysis of multivariate data obtained from a population consisting of distinct latent classes. A common factor model is assumed to hold within each of the latent classes. Factor mixture modeling involves obtaining estimates of the model parameters, and may also be used to assign subjects to their most…
Descriptors: Simulation, Item Response Theory, Models, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1  |  2