Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 15 |
Descriptor
Source
Author
Publication Type
Reports - Research | 6 |
Journal Articles | 5 |
Collected Works - Proceedings | 4 |
Dissertations/Theses -… | 3 |
Books | 1 |
Collected Works - General | 1 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Administrators | 1 |
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Location
Netherlands | 2 |
Australia | 1 |
Brazil | 1 |
China | 1 |
Czech Republic | 1 |
Israel | 1 |
Massachusetts | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Portugal | 1 |
Slovakia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Masaki Eguchi – Vocabulary Learning and Instruction, 2022
Building on previous studies investigating the multidimensional nature of lexical use in task-based L2 performance, this study clarified the roles that the distinct lexical features play in predicting vocabulary proficiency in a corpus of L2 Oral Proficiency Interviews (OPI). A total of 85 OPI samples were rated by three separate raters based on a…
Descriptors: Lexicology, Oral Language, Language Proficiency, Vocabulary Development
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Magliano, Joseph P.; Lampi, Jodi P.; Ray, Melissa; Chan, Greta – Grantee Submission, 2020
Coherent mental models for successful comprehension require inferences that establish semantic "bridges" between discourse constituents and "elaborations" that incorporate relevant background knowledge. While it is established that individual differences in the extent to which postsecondary students engage in these processes…
Descriptors: Reading Comprehension, Reading Strategies, Inferences, Reading Tests
Snyder, Robin M. – Association Supporting Computer Users in Education, 2015
The field of topic modeling has become increasingly important over the past few years. Topic modeling is an unsupervised machine learning way to organize text (or image or DNA, etc.) information such that related pieces of text can be identified. This paper/session will present/discuss the current state of topic modeling, why it is important, and…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Computational Linguistics
Azevedo, Ana, Ed.; Azevedo, José, Ed. – IGI Global, 2019
E-assessments of students profoundly influence their motivation and play a key role in the educational process. Adapting assessment techniques to current technological advancements allows for effective pedagogical practices, learning processes, and student engagement. The "Handbook of Research on E-Assessment in Higher Education"…
Descriptors: Higher Education, Computer Assisted Testing, Multiple Choice Tests, Guides
Blikstein, Paulo; Worsley, Marcelo – Journal of Learning Analytics, 2016
New high-frequency multimodal data collection technologies and machine learning analysis techniques could offer new insights into learning, especially when students have the opportunity to generate unique, personalized artifacts, such as computer programs, robots, and solutions engineering challenges. To date most of the work on learning analytics…
Descriptors: Data Analysis, Data Collection, Educational Research, Constructivism (Learning)
Yamangil, Elif – ProQuest LLC, 2013
The past two decades have shown an unexpected effectiveness of "Web-scale" data in natural language processing. Even the simplest models, when paired with unprecedented amounts of unstructured and unlabeled Web data, have been shown to outperform sophisticated ones. It has been argued that the effectiveness of Web-scale data has…
Descriptors: Models, Natural Language Processing, Computational Linguistics, Bayesian Statistics
Kazemzadeh, Abe – ProQuest LLC, 2013
This dissertation studies how people describe emotions with language and how computers can simulate this descriptive behavior. Although many non-human animals can express their current emotions as social signals, only humans can communicate about emotions symbolically. This symbolic communication of emotion allows us to talk about emotions that we…
Descriptors: Natural Language Processing, Psychological Patterns, Computer Simulation, Discourse Analysis
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Boyd-Graber, Jordan – ProQuest LLC, 2010
Topic models like latent Dirichlet allocation (LDA) provide a framework for analyzing large datasets where observations are collected into groups. Although topic modeling has been fruitfully applied to problems social science, biology, and computer vision, it has been most widely used to model datasets where documents are modeled as exchangeable…
Descriptors: Language Patterns, Semantics, Linguistics, Multilingualism
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries