NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20253
Since 202417
Since 2021 (last 5 years)44
Since 2016 (last 10 years)70
Since 2006 (last 20 years)95
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 95 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Semere Kiros Bitew; Amir Hadifar; Lucas Sterckx; Johannes Deleu; Chris Develder; Thomas Demeester – IEEE Transactions on Learning Technologies, 2024
Multiple-choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, owing to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an…
Descriptors: Multiple Choice Tests, Computer Assisted Testing, Test Construction, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Huawei, Shi; Aryadoust, Vahid – Education and Information Technologies, 2023
Automated writing evaluation (AWE) systems are developed based on interdisciplinary research and technological advances such as natural language processing, computer sciences, and latent semantic analysis. Despite a steady increase in research publications in this area, the results of AWE investigations are often mixed, and their validity may be…
Descriptors: Writing Evaluation, Writing Tests, Computer Assisted Testing, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Chen; Hu, Xiao – IEEE Transactions on Learning Technologies, 2023
Free text answers to short questions can reflect students' mastery of concepts and their relationships relevant to learning objectives. However, automating the assessment of free text answers has been challenging due to the complexity of natural language. Existing studies often predict the scores of free text answers in a "black box"…
Descriptors: Computer Assisted Testing, Automation, Test Items, Semantics
Ying Fang; Rod D. Roscoe; Danielle S. McNamara – Grantee Submission, 2023
Artificial Intelligence (AI) based assessments are commonly used in a variety of settings including business, healthcare, policing, manufacturing, and education. In education, AI-based assessments undergird intelligent tutoring systems as well as many tools used to evaluate students and, in turn, guide learning and instruction. This chapter…
Descriptors: Artificial Intelligence, Computer Assisted Testing, Student Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Firoozi, Tahereh; Bulut, Okan; Epp, Carrie Demmans; Naeimabadi, Ali; Barbosa, Denilson – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students' written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems…
Descriptors: Computer Assisted Testing, Scoring, Essays, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Lae Lae Shwe; Sureena Matayong; Suntorn Witosurapot – Education and Information Technologies, 2024
Multiple Choice Questions (MCQs) are an important evaluation technique for both examinations and learning activities. However, the manual creation of questions is time-consuming and challenging for teachers. Hence, there is a notable demand for an Automatic Question Generation (AQG) system. Several systems have been created for this aim, but the…
Descriptors: Difficulty Level, Computer Assisted Testing, Adaptive Testing, Multiple Choice Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Johannes; Richner, Robin; Riser, Micha – International Journal of Artificial Intelligence in Education, 2023
Autograding short textual answers has become much more feasible due to the rise of NLP and the increased availability of question-answer pairs brought about by a shift to online education. Autograding performance is still inferior to human grading. The statistical and black-box nature of state-of-the-art machine learning models makes them…
Descriptors: Grading, Natural Language Processing, Computer Assisted Testing, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Kirk A.; Kao, Shu-chuan – Journal of Applied Testing Technology, 2022
Natural Language Processing (NLP) offers methods for understanding and quantifying the similarity between written documents. Within the testing industry these methods have been used for automatic item generation, automated scoring of text and speech, modeling item characteristics, automatic question answering, machine translation, and automated…
Descriptors: Item Banks, Natural Language Processing, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Haug, Tobias; Mann, Wolfgang; Holzknecht, Franz – Sign Language Studies, 2023
This study is a follow-up to previous research conducted in 2012 on computer-assisted language testing (CALT) that applied a survey approach to investigate the use of technology in sign language testing worldwide. The goal of the current study was to replicate the 2012 study and to obtain updated information on the use of technology in sign…
Descriptors: Computer Assisted Testing, Sign Language, Natural Language Processing, Language Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Botelho, Anthony; Baral, Sami; Erickson, John A.; Benachamardi, Priyanka; Heffernan, Neil T. – Journal of Computer Assisted Learning, 2023
Background: Teachers often rely on the use of open-ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through…
Descriptors: Natural Language Processing, Artificial Intelligence, Computer Assisted Testing, Mathematics Tests
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7