Publication Date
In 2025 | 1 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 44 |
Since 2006 (last 20 years) | 90 |
Descriptor
Source
Author
Enders, Craig K. | 3 |
Adam Sales | 2 |
Anthony F. Botelho | 2 |
Avery H. Closser | 2 |
Dongho Shin | 2 |
Hayes, Timothy | 2 |
Peugh, James L. | 2 |
Abu Jbara, Ahmed | 1 |
Adelson, Jill L. | 1 |
Adrienne D. Woods | 1 |
Alberto, Paul A. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 2 |
Researchers | 2 |
Administrators | 1 |
Students | 1 |
Location
United States | 4 |
Australia | 2 |
Canada | 2 |
Florida | 2 |
Germany | 2 |
Hawaii | 2 |
Malaysia | 2 |
North Carolina | 2 |
Texas | 2 |
United Kingdom (England) | 2 |
Belgium | 1 |
More ▼ |
Laws, Policies, & Programs
Bakke v Regents of University… | 1 |
Gratz et al v Bollinger et al | 1 |
Grutter et al v Bollinger et… | 1 |
Hopwood v Texas | 1 |
Race to the Top | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Francis L. Huang – Large-scale Assessments in Education, 2024
The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional…
Descriptors: Hierarchical Linear Modeling, Evaluation Methods, Educational Assessment, Data Analysis
Shaw, Mairead; Flake, Jessica K. – Educational Measurement: Issues and Practice, 2023
Clustered data structures are common in many areas of educational and psychological research (e.g., students clustered in schools, patients clustered by clinician). In the course of conducting research, questions are often administered to obtain scores reflecting latent constructs. Multilevel measurement models (MLMMs) allow for modeling…
Descriptors: Hierarchical Linear Modeling, Research Methodology, Data Analysis, Structural Equation Models
Rashelle J. Musci; Joseph Kush; Elise T. Pas; Catherine P. Bradshaw – Grantee Submission, 2024
Given the increased focus of educational research on what works for whom and under what circumstances over the last decade, educational researchers are increasingly turning toward mixture models to identify heterogeneous subgroups among students. Such data are inherently nested, as students are nested within classrooms and schools. Yet there has…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Nonparametric Statistics, Educational Research
Christopher M. Loan – ProQuest LLC, 2024
Simulations were conducted to establish best practice in hyperparameter optimization and accounting for clustering in Generalized Linear Mixed-Effects Model Trees (GLMM trees). Using data-driven best practices, the relationship between a 9th Grade On-Track to Graduate (9G-OTG) indicator and observed high school graduation within four years was…
Descriptors: Data Analysis, Simulation, Longitudinal Studies, Hierarchical Linear Modeling
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Minju Hong – ProQuest LLC, 2022
Reliability indicates the internal consistency of a test. In educational studies, reliability is a key feature for a test. Researchers have proposed many traditional reliability estimates, such as coefficient alpha and coefficient omega. However, traditional reliability indices do not deal with the data hierarchy, even though the multilevel…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Factor Structure, Test Reliability
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Lougheed, Jessica P.; Benson, Lizbeth; Cole, Pamela M.; Ram, Nilam – Developmental Psychology, 2019
The timing of events (e.g., how long it takes a child to exhibit a particular behavior) is often of interest in developmental science. Multilevel survival analysis (MSA) is useful for examining behavioral timing in observational studies (i.e., video recordings) of children's behavior. We illustrate how MSA can be used to answer 2 types of research…
Descriptors: Time, Child Behavior, Psychological Patterns, Data Analysis