Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 20 |
Descriptor
Decision Making | 20 |
Markov Processes | 20 |
Models | 13 |
Teaching Methods | 8 |
Bayesian Statistics | 6 |
Intelligent Tutoring Systems | 6 |
Problem Solving | 6 |
Artificial Intelligence | 5 |
Data Analysis | 5 |
Learning Processes | 5 |
Prediction | 5 |
More ▼ |
Source
Author
Barnes, Tiffany | 2 |
Chi, Min | 2 |
Almond, Russell G. | 1 |
Ansari, Asim | 1 |
Bargagliotti, Anna | 1 |
Barnes, Tiffany, Ed. | 1 |
Bei Fang | 1 |
Brunskill, Emma | 1 |
Chang, Hua-hua | 1 |
Chi, Min, Ed. | 1 |
Clement, Benjamin | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 6 |
Postsecondary Education | 4 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
North Carolina | 2 |
Afghanistan | 1 |
California (Los Angeles) | 1 |
Illinois (Chicago) | 1 |
Missouri | 1 |
United Kingdom (Scotland) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Gupta, Anika; Garg, Deepak; Kumar, Parteek – IEEE Transactions on Learning Technologies, 2022
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the…
Descriptors: Markov Processes, Online Courses, Learning Management Systems, Learning Analytics
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2020
One of the most challenging issues for online courseware engineering is to maintain the quality of instructional components, such as written text, video, and assessments. Learning engineers would like to know how individual instructional components contributed to students' learning. However, it is a hard task because it requires significant…
Descriptors: Teaching Methods, Engineering, Outcomes of Education, Courseware
Rafferty, Anna N.; Brunskill, Emma; Griffiths, Thomas L.; Shafto, Patrick – Cognitive Science, 2016
Human and automated tutors attempt to choose pedagogical activities that will maximize student learning, informed by their estimates of the student's current knowledge. There has been substantial research on tracking and modeling student learning, but significantly less attention on how to plan teaching actions and how the assumed student model…
Descriptors: Markov Processes, Educational Planning, Decision Making, Models
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Golubickis, Marius; Falben, Johanna K.; Cunningham, William A.; Macrae, C. Neil – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
Although ownership is acknowledged to exert a potent influence on various aspects of information processing, the origin of these effects remains largely unknown. Based on the demonstration that self-relevance facilitates perceptual judgments (i.e., the self-prioritization effect), here we explored the possibility that ownership enhances object…
Descriptors: Ownership, Self Concept, Stimuli, Responses
Gould, Robert; Bargagliotti, Anna; Johnson, Terri – Statistics Education Research Journal, 2017
Participatory sensing is a data collection method in which communities of people collect and share data to investigate large-scale processes. These data have many features often associated with the big data paradigm: they are rich and multivariate, include non-numeric data, and are collected as determined by an algorithm rather than by traditional…
Descriptors: Secondary School Teachers, Logical Thinking, Data Collection, Data
Clement, Benjamin; Oudeyer, Pierre-Yves; Lopes, Manuel – International Educational Data Mining Society, 2016
Online planning of good teaching sequences has the potential to provide a truly personalized teaching experience with a huge impact on the motivation and learning of students. In this work we compare two main approaches to achieve such a goal, POMDPs that can find an optimal long-term path, and Multi-armed bandits that optimize policies locally…
Descriptors: Intelligent Tutoring Systems, Markov Processes, Models, Teaching Methods
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Tokac, Umit – ProQuest LLC, 2016
The dissertation explored the efficacy of using a POMDP to select and apply appropriate instruction. POMDPs are a tool for planning: selecting a sequence of actions that will lead to an optimal outcome. RTI is an approach to instruction, where teachers craft individual plans for students based on the results of screening test. The goal is to…
Descriptors: Markov Processes, Program Implementation, Response to Intervention, Beginning Reading
Zhou, Guojing; Wang, Jianxun; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
In this study, we applied decision trees (DT) to extract a compact set of pedagogical decision-making rules from an original "full" set of 3,702 Reinforcement Learning (RL)- induced rules, referred to as the DT-RL rules and Full-RL rules respectively. We then evaluated the effectiveness of the two rule sets against a baseline Random…
Descriptors: Learning Theories, Teaching Methods, Decision Making, Intelligent Tutoring Systems
Rouder, Jeffrey N.; Yue, Yu; Speckman, Paul L.; Pratte, Michael S.; Province, Jordan M. – Psychological Review, 2010
A dominant theme in modeling human perceptual judgments is that sensory neural activity is summed or integrated until a critical bound is reached. Such models predict that, in general, the shape of response time distributions change across conditions, although in practice, this shape change may be subtle. An alternative view is that response time…
Descriptors: Reaction Time, Decision Making, Models, Statistical Analysis
Previous Page | Next Page »
Pages: 1 | 2