Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Author
Kelley, Todd R. | 2 |
Al-assaf, Y. | 1 |
Bennie, Fiona | 1 |
Boersma, Kerst | 1 |
Boerwinkel, Dirk Jan | 1 |
Carr, Ronald L. | 1 |
Corbett, Charlotte | 1 |
Custer, Rodney L. | 1 |
Daugherty, Jenny | 1 |
Haddad, Nick | 1 |
Harris, Constance | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Descriptive | 6 |
Reports - Research | 6 |
Tests/Questionnaires | 2 |
Guides - Classroom - Teacher | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Elementary Education | 3 |
Postsecondary Education | 2 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 2 |
Location
California | 1 |
Massachusetts | 1 |
United Arab Emirates | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Temiz, Burak Kagan – Physics Education, 2014
This study was conducted to develop a simple and inexpensive experimental apparatus that can measure the position of an object moving along a straight line at certain time intervals. For the construction of the apparatus, a battery-powered toy car, a fine-tipped paint brush, gouache (or watercolour) paint and paper tape were used. The working…
Descriptors: Kinetics, Science Equipment, Science Experiments, Cost Effectiveness
Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A. – IEEE Transactions on Education, 2013
A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…
Descriptors: Computer Simulation, Telecommunications, Information Networks, Computer Science Education
Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen – Journal of Pre-College Engineering Education Research, 2013
The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…
Descriptors: Engineering Technology, Engineering Education, Design, Exhibits
Bennie, Fiona; Corbett, Charlotte; Palo, Angela – Odyssey: New Directions in Deaf Education, 2015
This article describes an after-school program at the Horace Mann School for the Deaf (HMS), the oldest public day school for deaf students in the United States, where almost half of the student body imagined and created bridge and robotic machines. The Deaf Robotics Engineering and Math Team, or the DREAM Team club, included HMS students in…
Descriptors: After School Programs, Robotics, Deafness, Program Descriptions
Carr, Ronald L.; Strobel, Johannes – National Center for Engineering and Technology Education, 2011
Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…
Descriptors: Engineering, Educational Research, STEM Education, Integrated Curriculum
McSpadden, Moira; Kelley, Todd R. – Technology and Engineering Teacher, 2012
It is well documented that there is a disproportionate number of males pursuing engineering and technology careers when compared to their female counterparts (Milgram, 2011). Some recent articles have proposed methods to recruit more females into technology education (Milgram, 2011; Zywno, Gilbride, Hiscodes, Waalen, and Kennedy, 1999). However,…
Descriptors: Problem Based Learning, Engineering Education, Engineering Technology, Design
Lehman, James D.; Kim, WooRi; Harris, Constance – Journal of STEM Education: Innovations and Research, 2014
The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…
Descriptors: Communities of Practice, Elementary School Science, Integrated Curriculum, Engineering Technology
Mitsos, Alexander – Chemical Engineering Education, 2009
A project-based design course is developed for man-portable power generation via microfabricated fuel cell systems. Targeted audience are undergraduate chemical/process engineering students in their final year. The course covers 6 weeks, with three hours of lectures per week. Two alternative projects are developed, one focusing on selection of…
Descriptors: Engineering Education, Design, Instructional Design, Science Course Improvement Projects
Boerwinkel, Dirk Jan; Waarlo, Arend Jan; Boersma, Kerst – Journal of Biological Education, 2009
Perspectives are domain-specific strategies employed by experts in a specific field to formulate and investigate questions. Such strategies may therefore serve as good models for acquiring knowledge. Based on this premise, we developed the perspective of form and function, as used by both biologists and technical designers, into a tool for…
Descriptors: Expertise, Design, Biology, Teaching Methods
Koszalka, Tiffany A.; Wu, Yiyan – Quarterly Review of Distance Education, 2010
Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…
Descriptors: Engineering Education, Instructional Design, Design, Science Course Improvement Projects
Rehman, H.-u.; Said, R. A.; Al-assaf, Y. – IEEE Transactions on Education, 2009
This paper proposes an integrated approach for developing the engineering curricula with a specific focus on engineering design. The proposed approach allows a continuous and coherent development of engineering students' design skills throughout the entire undergraduate curriculum. This ongoing design experience is delivered at an involvement and…
Descriptors: Engineering Education, Undergraduate Study, Skill Development, Design
Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong – Journal of Technology Education, 2008
Through the efforts of National Center for Engineering and Technology Education (NCETE), three core engineering concepts within the realm of engineering design have emerged as crucial areas of need within secondary level technology education. These concepts are constraints, optimization, and predictive analysis (COPA). COPA appears to be at the…
Descriptors: Technology Education, Engineering Education, Concept Teaching, Scientific Concepts
Kelley, Todd R. – Journal of Technology Education, 2008
Since the publication of the Standards for Technological Literacy in 2000 (ITEA), there have been a number of new programs developed that are designed to teach pre-engineering. Project Lead the Way (PLTW) is one such program. Project Lead the Way boasts serving over 1250 schools in 44 states and teaching over 160,000 students. Another program is…
Descriptors: Cognitive Processes, Technological Literacy, Technology Education, Problem Solving
Haddad, Nick; McWilliams, Harold; Wagoner, Paul – National Aeronautics and Space Administration (NASA), 2007
NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…
Descriptors: Space Exploration, Space Sciences, Astronomy, Aviation Technology