NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20251
Since 202412
Since 2021 (last 5 years)59
Since 2016 (last 10 years)74
Since 2006 (last 20 years)74
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 74 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Sun; Fan Ouyang; Yan Li; Chengcong Zhu; Yang Zhou – Journal of Computer Assisted Learning, 2024
Background: With the development of computational literacy, there has been a surge in both research and practice application of text-based and block-based modalities within the field of computer programming education. Despite this trend, little work has actually examined how learners engaging in programming process when utilizing these two major…
Descriptors: Computer Science Education, Programming, Computer Literacy, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Perrotta, Carlo – Research in Education, 2021
This article offers a case study of how platforms and predictive infrastructures are emerging in higher education. It examines a Learning Analytics Application Programming Interface (API) from a popular Learning Management System. The API is treated firstly as an artefact based on the computational abstraction of educational principles, and…
Descriptors: Learning Analytics, Programming, Programming Languages, Computer Interfaces
Peer reviewed Peer reviewed
Direct linkDirect link
Yingbin Zhang; Yafei Ye; Luc Paquette; Yibo Wang; Xiaoyong Hu – Journal of Computer Assisted Learning, 2024
Background: Learning analytics (LA) research often aggregates learning process data to extract measurements indicating constructs of interest. However, the warranty that such aggregation will produce reliable measurements has not been explicitly examined. The reliability evidence of aggregate measurements has rarely been reported, leaving an…
Descriptors: Learning Analytics, Learning Processes, Test Reliability, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Julie Marie Smith – ProQuest LLC, 2023
The purpose of this study is to analyze which behaviors are or are not helpful for debugging when a novice is in a state of unproductive persistence. Further, this project will exploratorily use a variety of analytical techniques -- including association rule mining, process mining, frequent sequence mining, and machine learning-- in order to…
Descriptors: Employees, Programming, Novices, Persistence
Peer reviewed Peer reviewed
Direct linkDirect link
Omer, Uzma; Tehseen, Rabia; Farooq, Muhammad Shoaib; Abid, Adnan – Education and Information Technologies, 2023
Learning analytics (LA) is a significant field of study to examine and identify difficulties the novice programmers face while learning how to program. Despite producing notable research by the community in the specified area, rare work is observed to synthesize these research efforts and discover the dimensions that guide the future research of…
Descriptors: Programming, Learning Analytics, Educational Research, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Wen-shuang Fu; Jia-hua Zhang; Di Zhang; Tian-tian Li; Min Lan; Na-na Liu – Journal of Educational Computing Research, 2025
Cognitive ability is closely associated with the acquisition of programming skills, and enhancing learners' cognitive ability is a crucial factor in improving the efficacy of programming education. Adaptive feedback strategies can provide learners with personalized support based on their learning context, which helps to stimulate their interest…
Descriptors: Feedback (Response), Cognitive Ability, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Weiqi; Wu, Yajuan; Ouyang, Fan – International Journal of Educational Technology in Higher Education, 2023
Pair programming (PP), as a mode of collaborative problem solving (CPS) in computer programming education, asks two students work in a pair to co-construct knowledge and solve problems. Considering the complex multimodality of pair programming caused by students' discourses, behaviors, and socio-emotions, it is of critical importance to examine…
Descriptors: Cooperative Learning, Problem Solving, Computer Science Education, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Ben-Yaacov, Anat; Hershkovitz, Arnon – Journal of Educational Computing Research, 2023
Block programming has been suggested as a way of engaging young learners with the foundations of programming and computational thinking in a syntax-free manner. Indeed, syntax errors--which form one of two broad categories of errors in programming, the other one being logic errors--are omitted while block programming. However, this does not mean…
Descriptors: Programming, Computation, Thinking Skills, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Amanpreet Kaur; Kuljit Kaur Chahal – Education and Information Technologies, 2024
Research so far has overlooked the contribution of students' noncognitive factors to their performance in introductory programming in the context of personalized learning support. This study uses learning analytics to design and implement a Dashboard to understand the contribution of introductory programming students' learning motivation,…
Descriptors: Learning Analytics, Introductory Courses, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sa Li; Jingjing Dong – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to deeply analyze and evaluate the changes in the comprehensive quality of college students' sports dance, the overall idea of systematically evaluating the changes in the comprehensive quality of college students' sports dance was established. Firstly, this article uses the triangular fuzzy number method to measure the evaluation…
Descriptors: Dance Education, Teaching Methods, Evaluation Methods, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5