Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 11 |
Descriptor
Bayesian Statistics | 11 |
Mathematical Formulas | 11 |
Simulation | 4 |
Accuracy | 3 |
Computation | 3 |
Mathematical Logic | 3 |
Probability | 3 |
Sample Size | 3 |
Structural Equation Models | 3 |
Teaching Methods | 3 |
Data Analysis | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 3 |
Grantee Submission | 2 |
Journal of Educational and… | 2 |
Cognitive Science | 1 |
Educational Studies in… | 1 |
Mathematics Teacher | 1 |
Teaching Statistics: An… | 1 |
Author
CadwalladerOlsker, Todd D. | 1 |
Chen, Ping | 1 |
Chow, Alan F. | 1 |
Dongho Shin | 1 |
Feldman, Jacob | 1 |
Goodman, Noah D. | 1 |
Griffiths, Thomas L. | 1 |
Guo, Xiaojun | 1 |
Haiyan Liu | 1 |
Han Du | 1 |
Hao Wu | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Audience
Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Mauricio Garnier-Villarreal; Terrence D. Jorgensen – Grantee Submission, 2024
Model evaluation is a crucial step in SEM, consisting of two broad areas: global and local fit, where local fit indices are use to modify the original model. In the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are used to select the parameters that can be added to improve the fit. The…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Indexes
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Satake, Eiki; Vashlishan Murray, Amy – Teaching Statistics: An International Journal for Teachers, 2015
This paper presents a comparison of three approaches to the teaching of probability to demonstrate how the truth table of elementary mathematical logic can be used to teach the calculations of conditional probabilities. Students are typically introduced to the topic of conditional probabilities--especially the ones that involve Bayes' rule--with…
Descriptors: Teaching Methods, Probability, Bayesian Statistics, Mathematical Logic
Chen, Ping – Journal of Educational and Behavioral Statistics, 2017
Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…
Descriptors: Test Items, Item Response Theory, Test Construction, Adaptive Testing
Chow, Alan F.; Van Haneghan, James P. – Educational Studies in Mathematics, 2016
This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…
Descriptors: Probability, College Students, Mathematical Formulas, Bayesian Statistics
CadwalladerOlsker, Todd D. – Mathematics Teacher, 2011
Bayes's theorem is notorious for being a difficult topic to learn and to teach. Problems involving Bayes's theorem (either implicitly or explicitly) generally involve calculations based on two or more given probabilities and their complements. Further, a correct solution depends on students' ability to interpret the problem correctly. Most people…
Descriptors: Critical Thinking, Probability, Mathematical Logic, Mathematics Skills
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction