Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Algorithms | 7 |
Maximum Likelihood Statistics | 7 |
Computation | 4 |
Item Response Theory | 4 |
Models | 3 |
Simulation | 3 |
Statistical Bias | 3 |
Correlation | 2 |
Data Analysis | 2 |
Monte Carlo Methods | 2 |
Psychometrics | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 3 |
Journal of Educational and… | 2 |
Educational and Psychological… | 1 |
Grantee Submission | 1 |
Author
Chengyu Cui | 1 |
Chun Wang | 1 |
Doran, Harold | 1 |
Gongjun Xu | 1 |
Harring, Jeffrey R. | 1 |
Hongxi Li | 1 |
Jeffrey R. Harring | 1 |
Ji Seung Yang | 1 |
Ki Lynn Matlock Cole | 1 |
Lee, Daniel Y. | 1 |
Liuquan Sun | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Reports - Descriptive | 1 |
Education Level
Elementary Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Big Five Inventory | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Mostafa Hosseinzadeh; Ki Lynn Matlock Cole – Educational and Psychological Measurement, 2024
In real-world situations, multidimensional data may appear on large-scale tests or psychological surveys. The purpose of this study was to investigate the effects of the quantity and magnitude of cross-loadings and model specification on item parameter recovery in multidimensional Item Response Theory (MIRT) models, especially when the model was…
Descriptors: Item Response Theory, Models, Maximum Likelihood Statistics, Algorithms
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Chengyu Cui; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap,…
Descriptors: Item Response Theory, Accuracy, Simulation, Psychometrics