NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20251
Since 20241
Since 2021 (last 5 years)9
Since 2016 (last 10 years)44
Since 2006 (last 20 years)99
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations2
Showing 1 to 15 of 99 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Joksimovic, Srecko; Li, Jiuyong; Zhan, Chen; Liu, Jixue; Liu, Lin – IEEE Transactions on Learning Technologies, 2023
Many educational institutions are using predictive models to leverage actionable insights using student data and drive student success. A common task has been predicting students at risk of dropping out for the necessary interventions to be made. However, issues of discrimination by these predictive models based on protected attributes of students…
Descriptors: Learning Analytics, Models, Student Records, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Sahar Voghoei – ProQuest LLC, 2021
The importance of retention rate for higher education institutions has encouraged data analysts to present various methods to predict at-risk students. Their objective is to provide timely information that may enable educators to channel the most effective remedial treatments towards precisely targeted students in an efficient manner. The present…
Descriptors: Data Science, Academic Achievement, School Holding Power, Predictor Variables
Douglas Anthony Taylor – ProQuest LLC, 2021
McMillan Public Schools (MPS) is a public school system in the southeastern part of the United States that serves approximately 28,000 students. Gregory Middle School (GMS) is one of 52 schools within MPS that serves 985 students. I used MPS and GMS as pseudonyms to anonymize the school system and school. In July 2019, I was appointed as the…
Descriptors: Middle School Students, Educational Environment, Poverty, Disadvantaged Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Kisling, Reid; Peterson, Andrew; Nisbet, Robert – Strategic Enrollment Management Quarterly, 2021
Data analytics is undergoing an evolution through effective data use to support both operational and learning analytics models. However, this evolution will require that institutional leaders transform their data systems to best support the needs of application modeling and use their intuition to help drive the development of better analytical…
Descriptors: Higher Education, Learning Analytics, Models, Instructional Leadership
Kelli A. Bird; Benjamin L. Castleman; Zachary Mabel; Yifeng Song – Annenberg Institute for School Reform at Brown University, 2021
Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of transparency by systematically comparing two…
Descriptors: At Risk Students, Higher Education, Predictive Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Aiken, John M.; Henderson, Rachel; Caballero, Marcos D. – Physical Review Physics Education Research, 2019
Physics education research (PER) has used quantitative modeling techniques to explore learning, affect, and other aspects of physics education. However, these studies have rarely examined the predictive output of the models, instead focusing on the inferences or causal relationships observed in various data sets. This research introduces a modern…
Descriptors: Physics, Bachelors Degrees, College Science, Student Records
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Motz, Benjamin; Busey, Thomas; Rickert, Martin; Landy, David – International Educational Data Mining Society, 2018
Analyses of student data in post-secondary education should be sensitive to the fact that there are many different topics of study. These different areas will interest different kinds of students, and entail different experiences and learning activities. However, it can be challenging to identify the distinct academic themes that students might…
Descriptors: Data Collection, Data Analysis, Enrollment, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christie, S. Thomas; Jarratt, Daniel C.; Olson, Lukas A.; Taijala, Taavi T. – International Educational Data Mining Society, 2019
Schools across the United States suffer from low on-time graduation rates. Targeted interventions help at-risk students meet graduation requirements in a timely manner, but identifying these students takes time and practice, as warning signs are often context-specific and reflected in a combination of attendance, social, and academic signals…
Descriptors: Dropout Prevention, At Risk Students, Artificial Intelligence, Decision Support Systems
Carlson, Tiffany; Crepeau-Hobson, Franci – Communique, 2021
When the coronavirus pandemic was declared a public health crisis in March 2020, school psychologists were forced into situations where face-to-face interaction with their students was discouraged and in some cases, prohibited. Consequently, the traditional practice of school psychology abruptly ended. Individualized Education Plans (IEP) and…
Descriptors: Cognitive Tests, Ethics, Decision Making, Models
Smith, Brent; Milham, Laura – Advanced Distributed Learning Initiative, 2021
Since 2016, the Advanced Distributed Learning (ADL) Initiative has been developing the Total Learning Architecture (TLA), a 4-pillar data strategy for managing lifelong learning. Each pillar describes a type of learning-related data that needs to be captured, managed, and shared across an organization. Each data pillar is built on a set of…
Descriptors: Learning Analytics, Computer Software, Metadata, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Volchok, Edward – Community College Journal of Research and Practice, 2018
This retrospective study evaluates early semester predictors of whether or not community college students will successfully complete blended or hybrid courses. These predictors are available to faculty by the fourth week of the semester. Success is defined as receiving a grade of C- or higher. Failure is defined as a grade below a C- or a…
Descriptors: Community Colleges, Success, Blended Learning, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jeon, Byungsoo; Shafran, Eyal; Breitfeller, Luke; Levin, Jason; Rosé, Carolyn P. – International Educational Data Mining Society, 2019
This paper addresses a key challenge in Educational Data Mining, namely to model student behavioral trajectories in order to provide a means for identifying students most at risk, with the goal of providing supportive interventions. While many forms of data including clickstream data or data from sensors have been used extensively in time series…
Descriptors: Online Courses, At Risk Students, Academic Achievement, Academic Failure
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7