Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 21 |
Since 2016 (last 10 years) | 29 |
Since 2006 (last 20 years) | 30 |
Descriptor
Prediction | 30 |
Programming Languages | 30 |
Models | 14 |
Computer Science Education | 11 |
Computer Software | 11 |
Teaching Methods | 9 |
Data Analysis | 8 |
Foreign Countries | 8 |
Academic Achievement | 7 |
Accuracy | 7 |
Undergraduate Students | 7 |
More ▼ |
Source
Author
Publication Type
Reports - Research | 24 |
Journal Articles | 21 |
Speeches/Meeting Papers | 7 |
Reports - Descriptive | 3 |
Collected Works - Proceedings | 1 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for… | 1 |
Program for International… | 1 |
Test of English for… | 1 |
What Works Clearinghouse Rating
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Mentzer, Kevin; Galante, Zachary; Frydenberg, Mark – Information Systems Education Journal, 2022
Organizations are keenly interested in data gathering from websites where discussions of products and brands occur. This increasingly means that programmers need an understanding of how to work with website application programming interfaces (APIs) for data acquisition. In this hands-on lab activity, students will learn how to gather data from…
Descriptors: Prediction, Competition, Music, Data Analysis
Noma, Hisashi; Hamura, Yasuyuki; Sugasawa, Shonosuke; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has played an important role in evidence-based medicine for assessing the comparative effectiveness of multiple available treatments. The prediction interval has been one of the standard outputs in recent network meta-analysis as an effective measure that enables simultaneous assessment of uncertainties in treatment effects…
Descriptors: Intervals, Meta Analysis, Evidence Based Practice, Comparative Analysis
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Kaste, Joshua A. M.; Green, Antwan; Shachar-Hill, Yair – Biochemistry and Molecular Biology Education, 2023
The modeling of rates of biochemical reactions--fluxes--in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint-based (Metabolic Flux Analysis and flux balance analysis)…
Descriptors: Science Instruction, Teaching Methods, Prediction, Metabolism
Kuroki, Masanori – Journal of Economic Education, 2023
As vast amounts of data have become available in business in recent years, the demand for data scientists has been rising. The author of this article provides a tutorial on how one entry-level machine learning competition from Kaggle, an online community for data scientists, can be integrated into an undergraduate econometrics course as an…
Descriptors: Statistics Education, Teaching Methods, Competition, Prediction
Construction and Analysis of a Decision Tree-Based Predictive Model for Learning Intervention Advice
Chenglong Wang – Turkish Online Journal of Educational Technology - TOJET, 2024
The rapid development of education informatization has accumulated a large amount of data for learning analytics, and adopting educational data mining to find new patterns of data, develop new algorithms and models, and apply known predictive models to the teaching system to improve learning is the challenge and vision of the education field in…
Descriptors: Decision Making, Prediction, Models, Intervention
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Lindén, Johan – Physics Education, 2020
A glass of water covered with a disk with a hole in it can be turned upside down without spilling the water in the glass, provided the hole is small enough and the disk is pressed against the rim of the glass. A quasistatic numerical simulation based on hydrostatic pressure and surface tension of water was used calculate the critical hole diameter…
Descriptors: Physics, Science Instruction, Water, Teaching Methods
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Sentiment and Sentence Similarity as Predictors of Integrated and Independent L2 Writing Performance
Uzun, Kutay; Ulum, Ömer Gökhan – Acuity: Journal of English Language Pedagogy, Literature and Culture, 2022
This study aimed to utilize sentiment and sentence similarity analyses, two Natural Language Processing techniques, to see if and how well they could predict L2 Writing Performance in integrated and independent task conditions. The data sources were an integrated L2 writing corpus of 185 literary analysis essays and an independent L2 writing…
Descriptors: Natural Language Processing, Second Language Learning, Second Language Instruction, Writing (Composition)
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Lezhnina, Olga; Kismihók, Gábor – International Journal of Research & Method in Education, 2022
In our age of big data and growing computational power, versatility in data analysis is important. This study presents a flexible way to combine statistics and machine learning for data analysis of a large-scale educational survey. The authors used statistical and machine learning methods to explore German students' attitudes towards information…
Descriptors: Student Attitudes, Scientific Literacy, Numeracy, Foreign Countries
Previous Page | Next Page »
Pages: 1 | 2