Publication Date
In 2025 | 10 |
Since 2024 | 23 |
Since 2021 (last 5 years) | 65 |
Since 2016 (last 10 years) | 121 |
Since 2006 (last 20 years) | 265 |
Descriptor
Scoring | 265 |
Models | 226 |
Item Response Theory | 50 |
Foreign Countries | 47 |
Evaluation Methods | 45 |
Scores | 45 |
Test Items | 45 |
Computer Assisted Testing | 41 |
Comparative Analysis | 39 |
Automation | 36 |
Correlation | 35 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Teachers | 6 |
Researchers | 2 |
Community | 1 |
Practitioners | 1 |
Location
California | 7 |
Australia | 6 |
Germany | 5 |
United Kingdom (England) | 5 |
China | 4 |
New York | 4 |
Rhode Island | 4 |
Singapore | 4 |
Brazil | 3 |
Connecticut | 3 |
Indiana | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jae-Sang Han; Hyun-Joo Kim – Journal of Science Education and Technology, 2025
This study explores the potential to enhance the performance of convolutional neural networks (CNNs) for automated scoring of kinematic graph answers through data augmentation using Deep Convolutional Generative Adversarial Networks (DCGANs). By developing and fine-tuning a DCGAN model to generate high-quality graph images, we explored its…
Descriptors: Performance, Automation, Scoring, Models
Akif Avcu – Malaysian Online Journal of Educational Technology, 2025
This scope-review presents the milestones of how Hierarchical Rater Models (HRMs) become operable to used in automated essay scoring (AES) to improve instructional evaluation. Although essay evaluations--a useful instrument for evaluating higher-order cognitive abilities--have always depended on human raters, concerns regarding rater bias,…
Descriptors: Automation, Scoring, Models, Educational Assessment
Benjamin Goecke; Paul V. DiStefano; Wolfgang Aschauer; Kurt Haim; Roger Beaty; Boris Forthmann – Journal of Creative Behavior, 2024
Automated scoring is a current hot topic in creativity research. However, most research has focused on the English language and popular verbal creative thinking tasks, such as the alternate uses task. Therefore, in this study, we present a large language model approach for automated scoring of a scientific creative thinking task that assesses…
Descriptors: Creativity, Creative Thinking, Scoring, Automation
Selcuk Acar; Peter Organisciak; Denis Dumas – Journal of Creative Behavior, 2025
In this three-study investigation, we applied various approaches to score drawings created in response to both Form A and Form B of the Torrance Tests of Creative Thinking-Figural (broadly TTCT-F) as well as the Multi-Trial Creative Ideation task (MTCI). We focused on TTCT-F in Study 1, and utilizing a random forest classifier, we achieved 79% and…
Descriptors: Scoring, Computer Assisted Testing, Models, Correlation
Lili Zhou; TienTien Lee; Mingming Xing; Kaifeng Xue – Science & Education, 2025
Green development is an effective mode of economic growth and social development aiming at efficiency, harmony, and sustainability, which has become an important trend. The development of green industry is taken by many countries as an important measure to promote economic restructuring and highlighting environmental awareness. The green chemistry…
Descriptors: Scientific Literacy, Scientific Attitudes, Conservation (Environment), Chemistry
Wheeler, Jordan M.; Engelhard, George; Wang, Jue – Measurement: Interdisciplinary Research and Perspectives, 2022
Objectively scoring constructed-response items on educational assessments has long been a challenge due to the use of human raters. Even well-trained raters using a rubric can inaccurately assess essays. Unfolding models measure rater's scoring accuracy by capturing the discrepancy between criterion and operational ratings by placing essays on an…
Descriptors: Accuracy, Scoring, Statistical Analysis, Models
Héctor J. Pijeira-Díaz; Sophia Braumann; Janneke van de Pol; Tamara van Gog; Anique B. H. Bruin – British Journal of Educational Technology, 2024
Advances in computational language models increasingly enable adaptive support for self-regulated learning (SRL) in digital learning environments (DLEs; eg, via automated feedback). However, the accuracy of those models is a common concern for educational stakeholders (eg, policymakers, researchers, teachers and learners themselves). We compared…
Descriptors: Computational Linguistics, Independent Study, Secondary School Students, Causal Models
DeCarlo, Lawrence T.; Zhou, Xiaoliang – Journal of Educational Measurement, 2021
In signal detection rater models for constructed response (CR) scoring, it is assumed that raters discriminate equally well between different latent classes defined by the scoring rubric. An extended model that relaxes this assumption is introduced; the model recognizes that a rater may not discriminate equally well between some of the scoring…
Descriptors: Scoring, Models, Bias, Perception
Joshua B. Gilbert; James G. Soland; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2025
Value-Added Models (VAMs) are both common and controversial in education policy and accountability research. While the sensitivity of VAMs to model specification and covariate selection is well documented, the extent to which test scoring methods (e.g., mean scores vs. IRT-based scores) may affect VA estimates is less studied. We examine the…
Descriptors: Value Added Models, Tests, Testing, Scoring
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Yuang Wei; Bo Jiang – IEEE Transactions on Learning Technologies, 2024
Understanding student cognitive states is essential for assessing human learning. The deep neural networks (DNN)-inspired cognitive state prediction method improved prediction performance significantly; however, the lack of explainability with DNNs and the unitary scoring approach fail to reveal the factors influencing human learning. Identifying…
Descriptors: Cognitive Mapping, Models, Prediction, Short Term Memory
Joshua B. Gilbert – Annenberg Institute for School Reform at Brown University, 2024
When analyzing treatment effects on test scores, researchers face many choices and competing guidance for scoring tests and modeling results. This study examines the impact of scoring choices through simulation and an empirical application. Results show that estimates from multiple methods applied to the same data will vary because two-step models…
Descriptors: Scores, Statistical Bias, Statistical Inference, Scoring
Yang Zhang; Yangping Li; Weiping Hu; Huizhi Bai; Yuanjing Lyu – Journal of Science Education and Technology, 2025
Scientific creativity plays an essential role in science education as an advanced cognitive ability that inspires students to solve scientific problems inventively. The cultivation of scientific creativity relies heavily on effective assessment. Typically, human raters manually score scientific creativity using the Consensual Assessment Technique…
Descriptors: Eye Movements, Artificial Intelligence, Creativity, Scientific Concepts
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation