Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 45 |
Descriptor
Least Squares Statistics | 45 |
Simulation | 45 |
Computation | 16 |
Models | 16 |
Regression (Statistics) | 13 |
Evaluation Methods | 12 |
Item Response Theory | 10 |
Correlation | 9 |
Factor Analysis | 9 |
Sample Size | 9 |
Bayesian Statistics | 8 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 42 |
Reports - Research | 30 |
Reports - Evaluative | 12 |
Reports - Descriptive | 3 |
Tests/Questionnaires | 2 |
Education Level
Higher Education | 4 |
Postsecondary Education | 3 |
Early Childhood Education | 2 |
Elementary Secondary Education | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Grade 2 | 1 |
Preschool Education | 1 |
Primary Education | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Head Start | 1 |
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating
Milica Miocevic; Fayette Klaassen; Mariola Moeyaert; Gemma G. M. Geuke – Journal of Experimental Education, 2025
Mediation analysis in Single Case Experimental Designs (SCEDs) evaluates intervention mechanisms for individuals. Despite recent methodological developments, no clear guidelines exist for maximizing power to detect the indirect effect in SCEDs. This study compares frequentist and Bayesian methods, determining (1) minimum required sample size to…
Descriptors: Research Design, Mediation Theory, Statistical Analysis, Simulation
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Aert, Robbie C. M.; Jackson, Dan – Research Synthesis Methods, 2019
The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the…
Descriptors: Meta Analysis, Least Squares Statistics, Inferences, Guidelines
Stanley, T. D.; Doucouliagos, Hristos – Research Synthesis Methods, 2017
Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA)…
Descriptors: Meta Analysis, Least Squares Statistics, Publications, Bias
Kogar, Hakan – International Journal of Assessment Tools in Education, 2018
The aim of this simulation study, determine the relationship between true latent scores and estimated latent scores by including various control variables and different statistical models. The study also aimed to compare the statistical models and determine the effects of different distribution types, response formats and sample sizes on latent…
Descriptors: Simulation, Context Effect, Computation, Statistical Analysis
Christ, Theodore J.; Desjardins, Christopher David – Journal of Psychoeducational Assessment, 2018
Curriculum-Based Measurement of Oral Reading (CBM-R) is often used to monitor student progress and guide educational decisions. Ordinary least squares regression (OLSR) is the most widely used method to estimate the slope, or rate of improvement (ROI), even though published research demonstrates OLSR's lack of validity and reliability, and…
Descriptors: Bayesian Statistics, Curriculum Based Assessment, Oral Reading, Least Squares Statistics
Peng Ding; Avi Feller; Luke Miratrix – Grantee Submission, 2018
Understanding and characterizing treatment effect variation in randomized experiments has become essential for going beyond the "black box" of the average treatment effect. Nonetheless, traditional statistical approaches often ignore or assume away such variation. In the context of randomized experiments, this paper proposes a framework…
Descriptors: Guidelines, Least Squares Statistics, Simulation, Federal Programs
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick – Journal of Experimental Education, 2017
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Descriptors: Monte Carlo Methods, Simulation, Intervention, Replication (Evaluation)
Seman, Laio Oriel; Hausmann, Romeu; Bezerra, Eduardo Augusto – IEEE Transactions on Education, 2018
Contribution: This paper presents the "PBL classroom model," an agent-based simulation (ABS) that allows testing of several scenarios of a project-based learning (PBL) application by considering different levels of soft-skills, and students' perception of the methodology. Background: While the community has made great advances in…
Descriptors: Active Learning, Student Projects, Vignettes, Classroom Environment
Stanley, Leanne M.; Edwards, Michael C. – Educational and Psychological Measurement, 2016
The purpose of this article is to highlight the distinction between the reliability of test scores and the fit of psychometric measurement models, reminding readers why it is important to consider both when evaluating whether test scores are valid for a proposed interpretation and/or use. It is often the case that an investigator judges both the…
Descriptors: Test Reliability, Goodness of Fit, Scores, Patients
Vuolo, Mike – Sociological Methods & Research, 2017
Often in sociology, researchers are confronted with nonnormal variables whose joint distribution they wish to explore. Yet, assumptions of common measures of dependence can fail or estimating such dependence is computationally intensive. This article presents the copula method for modeling the joint distribution of two random variables, including…
Descriptors: Sociology, Research Methodology, Social Science Research, Models