Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 14 |
Descriptor
Nonparametric Statistics | 14 |
Test Length | 14 |
Item Response Theory | 12 |
Sample Size | 10 |
Goodness of Fit | 8 |
Simulation | 7 |
Test Items | 6 |
Computation | 4 |
Error of Measurement | 4 |
Models | 4 |
Statistical Analysis | 4 |
More ▼ |
Source
Educational and Psychological… | 5 |
Applied Psychological… | 3 |
Applied Measurement in… | 2 |
Journal of Educational… | 2 |
Educational Sciences: Theory… | 1 |
Journal of Experimental… | 1 |
Author
Wells, Craig S. | 3 |
Liang, Tie | 2 |
Abad, Francisco J. | 1 |
Bolt, Daniel M. | 1 |
Cheng, Ying | 1 |
Cui, Zhongmin | 1 |
Douglas, Jeffrey | 1 |
Hambleton, Ronald K. | 1 |
Huggins-Manley, Anne Corinne | 1 |
Kolen, Michael J. | 1 |
Lathrop, Quinn N. | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 11 |
Reports - Evaluative | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Qiu, Yuxi; Huggins-Manley, Anne Corinne – Educational and Psychological Measurement, 2019
This study aimed to assess the accuracy of the empirical item characteristic curve (EICC) preequating method given the presence of test speededness. The simulation design of this study considered the proportion of speededness, speededness point, speededness rate, proportion of missing on speeded items, sample size, and test length. After crossing…
Descriptors: Accuracy, Equated Scores, Test Items, Nonparametric Statistics
Svetina, Dubravka; Levy, Roy – Journal of Experimental Education, 2016
This study investigated the effect of complex structure on dimensionality assessment in compensatory multidimensional item response models using DETECT- and NOHARM-based methods. The performance was evaluated via the accuracy of identifying the correct number of dimensions and the ability to accurately recover item groupings using a simple…
Descriptors: Item Response Theory, Accuracy, Correlation, Sample Size
Sinharay, Sandip – Applied Measurement in Education, 2017
Karabatsos compared the power of 36 person-fit statistics using receiver operating characteristics curves and found the "H[superscript T]" statistic to be the most powerful in identifying aberrant examinees. He found three statistics, "C", "MCI", and "U3", to be the next most powerful. These four statistics,…
Descriptors: Nonparametric Statistics, Goodness of Fit, Simulation, Comparative Analysis
Sengul Avsar, Asiye; Tavsancil, Ezel – Educational Sciences: Theory and Practice, 2017
This study analysed polytomous items' psychometric properties according to nonparametric item response theory (NIRT) models. Thus, simulated datasets--three different test lengths (10, 20 and 30 items), three sample distributions (normal, right and left skewed) and three samples sizes (100, 250 and 500)--were generated by conducting 20…
Descriptors: Test Items, Psychometrics, Nonparametric Statistics, Item Response Theory
Lathrop, Quinn N.; Cheng, Ying – Journal of Educational Measurement, 2014
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Descriptors: Cutting Scores, Classification, Computation, Nonparametric Statistics
Liang, Tie; Wells, Craig S.; Hambleton, Ronald K. – Journal of Educational Measurement, 2014
As item response theory has been more widely applied, investigating the fit of a parametric model becomes an important part of the measurement process. There is a lack of promising solutions to the detection of model misfit in IRT. Douglas and Cohen introduced a general nonparametric approach, RISE (Root Integrated Squared Error), for detecting…
Descriptors: Item Response Theory, Measurement Techniques, Nonparametric Statistics, Models
Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas – Educational and Psychological Measurement, 2014
An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…
Descriptors: Sampling, Test Items, Effect Size, Scaling
Tendeiro, Jorge N.; Meijer, Rob R. – Applied Psychological Measurement, 2013
To classify an item score pattern as not fitting a nonparametric item response theory (NIRT) model, the probability of exceedance (PE) of an observed response vector x can be determined as the sum of the probabilities of all response vectors that are, at most, as likely as x, conditional on the test's total score. Vector x is to be considered…
Descriptors: Probability, Nonparametric Statistics, Goodness of Fit, Test Length
Nandakumar, Ratna; Yu, Feng; Zhang, Yanwei – Applied Psychological Measurement, 2011
DETECT is a nonparametric methodology to identify the dimensional structure underlying test data. The associated DETECT index, "D[subscript max]," denotes the degree of multidimensionality in data. Conditional covariances (CCOV) are the building blocks of this index. In specifying population CCOVs, the latent test composite [theta][subscript TT]…
Descriptors: Nonparametric Statistics, Statistical Analysis, Tests, Data
Sueiro, Manuel J.; Abad, Francisco J. – Educational and Psychological Measurement, 2011
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Descriptors: Goodness of Fit, Item Response Theory, Nonparametric Statistics, Probability
Lee, Young-Sun; Wollack, James A.; Douglas, Jeffrey – Educational and Psychological Measurement, 2009
The purpose of this study was to assess the model fit of a 2PL through comparison with the nonparametric item characteristic curve (ICC) estimation procedures. Results indicate that three nonparametric procedures implemented produced ICCs that are similar to that of the 2PL for items simulated to fit the 2PL. However for misfitting items,…
Descriptors: Nonparametric Statistics, Item Response Theory, Test Items, Simulation
Liang, Tie; Wells, Craig S. – Educational and Psychological Measurement, 2009
Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…
Descriptors: Sample Size, Nonparametric Statistics, Item Response Theory, Goodness of Fit
Cui, Zhongmin; Kolen, Michael J. – Applied Psychological Measurement, 2008
This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…
Descriptors: Test Length, Test Content, Simulation, Computation
Wells, Craig S.; Bolt, Daniel M. – Applied Measurement in Education, 2008
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Descriptors: Test Length, Test Items, Monte Carlo Methods, Nonparametric Statistics