Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 9 |
| Since 2017 (last 10 years) | 9 |
| Since 2007 (last 20 years) | 18 |
Descriptor
| Classification | 18 |
| Structural Equation Models | 9 |
| Error of Measurement | 7 |
| Computation | 6 |
| Goodness of Fit | 6 |
| Accuracy | 4 |
| Evaluation Methods | 4 |
| Factor Analysis | 4 |
| Simulation | 4 |
| Statistical Bias | 4 |
| Comparative Analysis | 3 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 18 |
Author
| Lubke, Gitta | 2 |
| Muthen, Bengt | 2 |
| Tueller, Stephen | 2 |
| Aaron T. McLaughlin | 1 |
| Abar, Beau | 1 |
| Asparouhov, Tihomir | 1 |
| Bandalos, Deborah L. | 1 |
| Ben Kelcey | 1 |
| Benjamin Lugu | 1 |
| C. J. Van Lissa | 1 |
| Ceder, Ineke | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 18 |
| Reports - Research | 11 |
| Reports - Evaluative | 5 |
| Reports - Descriptive | 2 |
Education Level
| High Schools | 2 |
| Elementary Education | 1 |
| Grade 9 | 1 |
| Higher Education | 1 |
| Secondary Education | 1 |
Audience
| Researchers | 1 |
| Teachers | 1 |
Location
| Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Russell P. Houpt; Kevin J. Grimm; Aaron T. McLaughlin; Daryl R. Van Tongeren – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Numerous methods exist to determine the optimal number of classes when using latent profile analysis (LPA), but none are consistently correct. Recently, the likelihood incremental percentage per parameter (LI3P) was proposed as a model effect-size measure. To evaluate the LI3P more thoroughly, we simulated 50,000 datasets, manipulating factors…
Descriptors: Structural Equation Models, Profiles, Sample Size, Evaluation Methods
C. J. Van Lissa; M. Garnier-Villarreal; D. Anadria – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) refers to techniques for identifying groups in data based on a parametric model. Examples include mixture models, LCA with ordinal indicators, and latent class growth analysis. Despite its popularity, there is limited guidance with respect to decisions that must be made when conducting and reporting LCA. Moreover, there…
Descriptors: Multivariate Analysis, Structural Equation Models, Open Source Technology, Computation
Johan Lyrvall; Zsuzsa Bakk; Jennifer Oser; Roberto Di Mari – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with covariates. The proposed approach involves (1) fitting a single-level measurement model while ignoring the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model with the covariates while controlling for…
Descriptors: Hierarchical Linear Modeling, Statistical Bias, Error of Measurement, Simulation
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Minjung Kim; Christa Winkler; James Uanhoro; Joshua Peri; John Lochman – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Cluster memberships associated with the mediation effect are often changed due to the temporal distance between the cause-and-effect variables in longitudinal data. Nevertheless, current practices in multilevel mediation analysis mostly assume a purely hierarchical data structure. A Monte Carlo simulation study is conducted to examine the…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Multivariate Analysis, Causal Models
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Abar, Beau; Loken, Eric – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…
Descriptors: Probability, Statistical Bias, Multivariate Analysis, Models
Lubke, Gitta; Tueller, Stephen – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent…
Descriptors: Classification, Models, Statistical Analysis, Comparative Analysis
Koran, Jennifer; Hancock, Gregory R. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Valuable methods have been developed for incorporating ordinal variables into structural equation models using a latent response variable formulation. However, some model parameters, such as the means and variances of latent factors, can be quite difficult to interpret because the latent response variables have an arbitrary metric. This limitation…
Descriptors: Structural Equation Models, Data, Classification, Reading
Kaplan, David; Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…
Descriptors: Markov Processes, Longitudinal Studies, Probability, Item Response Theory
Tueller, Stephen; Lubke, Gitta – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Structural equation mixture models (SEMMs) are latent class models that permit the estimation of a structural equation model within each class. Fitting SEMMs is illustrated using data from 1 wave of the Notre Dame Longitudinal Study of Aging. Based on the model used in the illustration, SEMM parameter estimation and correct class assignment are…
Descriptors: Structural Equation Models, Computation, Classification, Longitudinal Studies
Henry, Kimberly L.; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…
Descriptors: Statistical Analysis, Probability, Classification, Grade 9
Previous Page | Next Page ยป
Pages: 1 | 2
Peer reviewed
Direct link
