Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 12 |
| Since 2017 (last 10 years) | 12 |
| Since 2007 (last 20 years) | 12 |
Descriptor
| Algorithms | 12 |
| Performance | 12 |
| Prediction | 10 |
| Artificial Intelligence | 6 |
| Accuracy | 5 |
| Data Analysis | 4 |
| Models | 4 |
| Decision Making | 3 |
| Electronic Learning | 3 |
| Learning Analytics | 3 |
| Academic Achievement | 2 |
| More ▼ | |
Source
Author
| Aykut Durak | 1 |
| Ben Soussia, Amal | 1 |
| Bergamin, Per | 1 |
| Boyer, Anne | 1 |
| Breannan C. Howell | 1 |
| Cheung, Sum Kwing | 1 |
| Comsa, Ioan-Sorin | 1 |
| Cutumisu, Maria | 1 |
| Dylan Pirrotta | 1 |
| Feng, Mingyu, Ed. | 1 |
| González-Esparza, Lydia Marion | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 9 |
| Reports - Research | 9 |
| Collected Works - Proceedings | 1 |
| Dissertations/Theses -… | 1 |
| Information Analyses | 1 |
| Reports - Evaluative | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Laura E. Matzen; Zoe N. Gastelum; Breannan C. Howell; Kristin M. Divis; Mallory C. Stites – Cognitive Research: Principles and Implications, 2024
This study addressed the cognitive impacts of providing correct and incorrect machine learning (ML) outputs in support of an object detection task. The study consisted of five experiments that manipulated the accuracy and importance of mock ML outputs. In each of the experiments, participants were given the T and L task with T-shaped targets and…
Descriptors: Artificial Intelligence, Error Patterns, Decision Making, Models
He, Dan – ProQuest LLC, 2023
This dissertation examines the effectiveness of machine learning algorithms and feature engineering techniques for analyzing process data and predicting test performance. The study compares three classification approaches and identifies item-specific process features that are highly predictive of student performance. The findings suggest that…
Descriptors: Artificial Intelligence, Data Analysis, Algorithms, Classification
Maha Salem; Khaled Shaalan – Education and Information Technologies, 2025
The proliferation of digital learning platforms has revolutionized the generation, accessibility, and dissemination of educational resources, fostered collaborative learning environments and producing vast amounts of interaction data. Machine learning (ML) algorithms have emerged as powerful tools for analyzing these complex datasets, uncovering…
Descriptors: Electronic Learning, Prediction, Models, Educational Technology
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Ma, Hua; Huang, Zhuoxuan; Tang, Wensheng; Zhu, Haibin; Zhang, Hongyu; Li, Jingze – IEEE Transactions on Learning Technologies, 2023
To provide intelligent learning guidance for students in e-learning systems, it is necessary to accurately predict their performance in future exams by analyzing score data in past exams. However, existing research has not addressed the uncertain and dynamic features of students' cognitive status, whereas these features are essential for improving…
Descriptors: Prediction, Student Evaluation, Performance, Tests
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Aykut Durak; Vahide Bulut – Technology, Knowledge and Learning, 2025
The study uses the partial least squares-structural equation modeling (PLS-SEM) algorithm to predict the factors affecting the programming performance (PPE) (low, high) of the students receiving computer programming education. The participants of the study consist of 763 students who received programming education. In the analysis of the data, the…
Descriptors: Prediction, Low Achievement, High Achievement, Academic Achievement
Cheung, Sum Kwing; Zhang, Juan; Wu, Chenggang – Educational Psychology, 2023
This study explored whether executive functioning skills and maths test anxiety were associated with children's untimed and timed algorithmic computational performance and their discrepancy. It also investigated whether such relations were moderated by children's basic maths fact fluency. One hundred and thirty third-graders were rated by teachers…
Descriptors: Performance, Algorithms, Computation, Timed Tests
Ben Soussia, Amal; Labba, Chahrazed; Roussanaly, Azim; Boyer, Anne – International Journal of Information and Learning Technology, 2022
Purpose: The goal is to assess performance prediction systems (PPS) that are used to assist at-risk learners. Design/methodology/approach: The authors propose time-dependent metrics including earliness and stability. The authors investigate the relationships between the various temporal metrics and the precision metrics in order to identify the…
Descriptors: Performance, Prediction, Student Evaluation, At Risk Students
González-Esparza, Lydia Marion; Jin, Hao-Yue; Lu, Chang; Cutumisu, Maria – AERA Online Paper Repository, 2022
Detecting wheel-spinning behaviors of students who interact with an Intelligent Tutoring System (ITS) is important for generating pertinent and effective feedback and developing more enriching learning experiences. This analysis compares decision tree and bagged tree models of student productive persistence (i.e., mastering a skill) using the…
Descriptors: Student Behavior, Intelligent Tutoring Systems, Feedback (Response), Persistence
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating

Peer reviewed
Direct link
