NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hosseini, Roya; Akhuseyinoglu, Kamil; Brusilovsky, Peter; Malmi, Lauri; Pollari-Malmi, Kerttu; Schunn, Christian; Sirkiä, Teemu – International Journal of Artificial Intelligence in Education, 2020
This research is focused on how to support students' acquisition of program construction skills through worked examples. Although examples have been consistently proven to be valuable for student's learning, the learning technology for computer science education lacks program construction examples with interactive elements that could engage…
Descriptors: Programming, Computer Science Education, Problem Solving, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Matsuda, Noboru – International Journal of Artificial Intelligence in Education, 2022
This paper demonstrates that a teachable agent (TA) can play a dual role in an online learning environment (OLE) for learning by teaching--the teachable agent working as a synthetic peer for students to learn by teaching and as an interactive tool for cognitive task analysis when authoring an OLE for learning by teaching. We have developed an OLE…
Descriptors: Artificial Intelligence, Teaching Methods, Intelligent Tutoring Systems, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Jennings, Jay; Muldner, Kasia – International Journal of Artificial Intelligence in Education, 2021
When students are first learning to program, they not only have to learn to write programs, but also how to trace them. Code tracing involves stepping through a program step-by-step, which helps to predict the output of the program and identify bugs. Students routinely struggle with this activity, as evidenced by prior work and our own experiences…
Descriptors: Scaffolding (Teaching Technique), Tutors, Tutoring, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Albó, Laia; Barria-Pineda, Jordan; Brusilovsky, Peter; Hernández-Leo, Davinia – International Journal of Artificial Intelligence in Education, 2022
Over the last 10 years, learning analytics have provided educators with both dashboards and tools to understand student behaviors within specific technological environments. However, there is a lack of work to support educators in making data-informed design decisions when designing a blended course and planning appropriate learning activities. In…
Descriptors: Learning Analytics, Visual Aids, Design, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Price, Thomas W.; Dong, Yihuan; Zhi, Rui; Paaßen, Benjamin; Lytle, Nicholas; Cateté, Veronica; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2019
In the domain of programming, a growing number of algorithms automatically generate data-driven, next-step hints that suggest how students should edit their code to resolve errors and make progress. While these hints have the potential to improve learning if done well, few evaluations have directly assessed or compared the quality of different…
Descriptors: Comparative Analysis, Programming Languages, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yazdanian, Ramtin; West, Robert; Dillenbourg, Pierre – International Journal of Artificial Intelligence in Education, 2021
The Fourth Industrial Revolution has considerably sped up the pace of skill changes in many professional domains, with scores of new skills emerging and many old skills moving towards obsolescence. For these domains, identifying the new necessary skills in a timely manner is a difficult task, where existing methods are inadequate. Understanding…
Descriptors: Electronic Learning, Personnel Selection, Computer Software, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Myers, Matthew C.; Wilson, Joshua – International Journal of Artificial Intelligence in Education, 2023
This study evaluated the construct validity of six scoring traits of an automated writing evaluation (AWE) system called "MI Write." Persuasive essays (N = 100) written by students in grades 7 and 8 were randomized at the sentence-level using a script written with Python's NLTK module. Each persuasive essay was randomized 30 times (n =…
Descriptors: Construct Validity, Automation, Writing Evaluation, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Hutchins, Nicole M.; Biswas, Gautam; Zhang, Ningyu; Snyder, Caitlin; Lédeczi, Ákos; Maróti, Miklós – International Journal of Artificial Intelligence in Education, 2020
Driven by our technologically advanced workplaces and the surge in demand for proficiency in the computing disciplines, it is becoming imperative to provide computational thinking (CT) opportunities to all students. One approach for making computing accessible and relevant to learning and problem-solving in K-12 environments is to integrate it…
Descriptors: Computer Assisted Instruction, Problem Solving, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Dermeval, Diego; Paiva, Ranilson; Bittencourt, Ig Ibert; Vassileva, Julita; Borges, Daniel – International Journal of Artificial Intelligence in Education, 2018
Authoring tools have been broadly used to design Intelligent Tutoring Systems (ITS). However, ITS community still lacks a current understanding of how authoring tools are used by non-programmer authors to design ITS. Hence, the objective of this work is to review how authoring tools have been supporting ITS design for non-programmer authors. In…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Software, Evidence
Peer reviewed Peer reviewed
Direct linkDirect link
Bosch, Nigel; D'Mello, Sidney – International Journal of Artificial Intelligence in Education, 2017
Novice students (N = 99) participated in a lab study in which they learned the fundamentals of computer programming in Python using a self-paced computerized learning environment involving a 25-min scaffolded learning phase and a 10-min unscaffolded fadeout phase. Students provided affect judgments at approximately 100 points (every 15 s) over the…
Descriptors: Employees, Programming, Computers, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Rivers, Kelly; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2017
To provide personalized help to students who are working on code-writing problems, we introduce a data-driven tutoring system, ITAP (Intelligent Teaching Assistant for Programming). ITAP uses state abstraction, path construction, and state reification to automatically generate personalized hints for students, even when given states that have not…
Descriptors: Programming, Coding, Computers, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Nancy L. – International Journal of Artificial Intelligence in Education, 2017
This paper describes an educational argument modeling system, GAIL (Genetics Argumentation Inquiry Learning). Using GAIL's graphical interface, learners can select from possible argument content elements (hypotheses, data, etc.) displayed on the screen with which to construct argument diagrams. Unlike previous systems, GAIL uses domain-independent…
Descriptors: Persuasive Discourse, Feedback (Response), Inquiry, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gerdes, Alex; Heeren, Bastiaan; Jeuring, Johan; van Binsbergen, L. Thomas – International Journal of Artificial Intelligence in Education, 2017
Ask-Elle is a tutor for learning the higher-order, strongly-typed functional programming language Haskell. It supports the stepwise development of Haskell programs by verifying the correctness of incomplete programs, and by providing hints. Programming exercises are added to Ask-Elle by providing a task description for the exercise, one or more…
Descriptors: Intelligent Tutoring Systems, Automation, Feedback (Response), Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Devedzic, Vladan – International Journal of Artificial Intelligence in Education, 2016
If you ask me "Will Semantic Web 'ever' happen, in general, and specifically in education?", the best answer I can give you is "I don't know," but I know that today we are still far away from the hopes that I had when I wrote my paper "Education and The Semantic Web" (Devedzic 2004) more than 10 years ago. Much of the…
Descriptors: Web 2.0 Technologies, Semantics, Web Based Instruction, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; van Velsen, Martin; Popescu, Octav; Demi, Sandra; Ringenberg, Michael; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
In 2009, we reported on a new Intelligent Tutoring Systems (ITS) technology, example-tracing tutors, that can be built without programming using the Cognitive Tutor Authoring Tools (CTAT). Creating example-tracing tutors was shown to be 4-8 times as cost-effective as estimates for ITS development from the literature. Since 2009, CTAT and its…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Programming, Educational Technology
Previous Page | Next Page »
Pages: 1  |  2