Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 8 |
Descriptor
Meta Analysis | 8 |
Effect Size | 7 |
Statistical Analysis | 4 |
Computation | 2 |
Hypothesis Testing | 2 |
Monte Carlo Methods | 2 |
Multivariate Analysis | 2 |
Research Design | 2 |
Research Methodology | 2 |
Accuracy | 1 |
Bayesian Statistics | 1 |
More ▼ |
Source
Journal of Educational and… | 8 |
Author
Beretvas, S. Natasha | 1 |
Elizabeth Tipton | 1 |
Ferron, John | 1 |
Greenhouse, Joel B. | 1 |
Hedges, Larry V. | 1 |
Hennessy, Emily A. | 1 |
James E. Pustejovsky | 1 |
Joo, Seang-Hwane | 1 |
Kaitlyn G. Fitzgerald | 1 |
Kano, Yutaka | 1 |
Man Chen | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 6 |
Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Journal of Educational and Behavioral Statistics, 2025
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
James E. Pustejovsky; Man Chen – Journal of Educational and Behavioral Statistics, 2024
Meta-analyses of educational research findings frequently involve statistically dependent effect size estimates. Meta-analysts have often addressed dependence issues using ad hoc approaches that involve modifying the data to conform to the assumptions of models for independent effect size estimates, such as by aggregating estimates to obtain one…
Descriptors: Meta Analysis, Multivariate Analysis, Effect Size, Evaluation Methods
Joo, Seang-Hwane; Wang, Yan; Ferron, John; Beretvas, S. Natasha; Moeyaert, Mariola; Van Den Noortgate, Wim – Journal of Educational and Behavioral Statistics, 2022
Multiple baseline (MB) designs are becoming more prevalent in educational and behavioral research, and as they do, there is growing interest in combining effect size estimates across studies. To further refine the meta-analytic methods of estimating the effect, this study developed and compared eight alternative methods of estimating intervention…
Descriptors: Meta Analysis, Effect Size, Computation, Statistical Analysis
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Hedges, Larry V.; Schauer, Jacob M. – Journal of Educational and Behavioral Statistics, 2019
The problem of assessing whether experimental results can be replicated is becoming increasingly important in many areas of science. It is often assumed that assessing replication is straightforward: All one needs to do is repeat the study and see whether the results of the original and replication studies agree. This article shows that the…
Descriptors: Replication (Evaluation), Research Design, Research Methodology, Program Evaluation
Yuan, Ke-Hai; Kano, Yutaka – Journal of Educational and Behavioral Statistics, 2018
Meta-analysis plays a key role in combining studies to obtain more reliable results. In social, behavioral, and health sciences, measurement units are typically not well defined. More meaningful results can be obtained by standardizing the variables and via the analysis of the correlation matrix. Structural equation modeling (SEM) with the…
Descriptors: Meta Analysis, Structural Equation Models, Maximum Likelihood Statistics, Least Squares Statistics
Polanin, Joshua R.; Hennessy, Emily A.; Tanner-Smith, Emily E. – Journal of Educational and Behavioral Statistics, 2017
Meta-analysis is a statistical technique that allows an analyst to synthesize effect sizes from multiple primary studies. To estimate meta-analysis models, the open-source statistical environment R is quickly becoming a popular choice. The meta-analytic community has contributed to this growth by developing numerous packages specific to…
Descriptors: Meta Analysis, Open Source Technology, Computer Software, Effect Size
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling