Publication Date
In 2025 | 3 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 10 |
Descriptor
Adaptive Testing | 10 |
Algorithms | 10 |
Computer Assisted Testing | 8 |
Test Items | 7 |
Accuracy | 4 |
Artificial Intelligence | 3 |
Item Banks | 3 |
Item Response Theory | 3 |
Psychometrics | 3 |
Test Construction | 3 |
Computation | 2 |
More ▼ |
Source
Author
Bonner, Cavan V. | 1 |
Bulut, Okan | 1 |
Cai, Yan | 1 |
Emre Gonulates | 1 |
Gorgun, Guher | 1 |
Hanif Akhtar | 1 |
Harold Doran | 1 |
Jyoti Prakash Meher | 1 |
Liou, Gloria | 1 |
Livne, Oren | 1 |
Luo, Fen | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 7 |
Reports - Descriptive | 2 |
Dissertations/Theses -… | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Practitioners | 1 |
Researchers | 1 |
Location
New York (Rochester) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Harold Doran; Testsuhiro Yamada; Ted Diaz; Emre Gonulates; Vanessa Culver – Journal of Educational Measurement, 2025
Computer adaptive testing (CAT) is an increasingly common mode of test administration offering improved test security, better measurement precision, and the potential for shorter testing experiences. This article presents a new item selection algorithm based on a generalized objective function to support multiple types of testing conditions and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Pan, Yiqin; Livne, Oren; Wollack, James A.; Sinharay, Sandip – Educational Measurement: Issues and Practice, 2023
In computerized adaptive testing, overexposure of items in the bank is a serious problem and might result in item compromise. We develop an item selection algorithm that utilizes the entire bank well and reduces the overexposure of items. The algorithm is based on collaborative filtering and selects an item in two stages. In the first stage, a set…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index
Tan, Qingrong; Cai, Yan; Luo, Fen; Tu, Dongbo – Journal of Educational and Behavioral Statistics, 2023
To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item…
Descriptors: Cognitive Tests, Computer Assisted Testing, Adaptive Testing, Accuracy
Michael Bass; Scott Morris; Sheng Zhang – Measurement: Interdisciplinary Research and Perspectives, 2025
Administration of patient-reported outcome measures (PROs), using multidimensional computer adaptive tests (MCATs) has the potential to reduce patient burden, but the efficiency of MCAT depends on the degree to which an individual's responses fit the psychometric properties of the assessment. Assessing patients' symptom burden through the…
Descriptors: Adaptive Testing, Computer Assisted Testing, Patients, Outcome Measures
Gorgun, Guher; Bulut, Okan – Large-scale Assessments in Education, 2023
In low-stakes assessment settings, students' performance is not only influenced by students' ability level but also their test-taking engagement. In computerized adaptive tests (CATs), disengaged responses (e.g., rapid guesses) that fail to reflect students' true ability levels may lead to the selection of less informative items and thereby…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Yiqin Pan – ProQuest LLC, 2022
Item preknowledge refers to the phenomenon in which some examinees have access to live items before taking a test. It is one of the most common and significant concerns within the testing industry. Thus, various statistical methods have been proposed to detect item preknowledge in computerized linear or adaptive testing. However, the success of…
Descriptors: Artificial Intelligence, Prior Learning, Test Items, Algorithms
Liou, Gloria; Bonner, Cavan V.; Tay, Louis – International Journal of Testing, 2022
With the advent of big data and advances in technology, psychological assessments have become increasingly sophisticated and complex. Nevertheless, traditional psychometric issues concerning the validity, reliability, and measurement bias of such assessments remain fundamental in determining whether score inferences of human attributes are…
Descriptors: Psychometrics, Computer Assisted Testing, Adaptive Testing, Data
Hanif Akhtar – International Society for Technology, Education, and Science, 2023
For efficiency, Computerized Adaptive Test (CAT) algorithm selects items with the maximum information, typically with a 50% probability of being answered correctly. However, examinees may not be satisfied if they only correctly answer 50% of the items. Researchers discovered that changing the item selection algorithms to choose easier items (i.e.,…
Descriptors: Success, Probability, Computer Assisted Testing, Adaptive Testing
Wim J. van der Linden; Luping Niu; Seung W. Choi – Journal of Educational and Behavioral Statistics, 2024
A test battery with two different levels of adaptation is presented: a within-subtest level for the selection of the items in the subtests and a between-subtest level to move from one subtest to the next. The battery runs on a two-level model consisting of a regular response model for each of the subtests extended with a second level for the joint…
Descriptors: Adaptive Testing, Test Construction, Test Format, Test Reliability