NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20258
Since 202430
Since 2021 (last 5 years)70
Since 2016 (last 10 years)71
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 71 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Qiu; Michael R. Peabody; Kelly D. Bradley – Measurement: Interdisciplinary Research and Perspectives, 2024
It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics to conduct scales on continuous data under the Rasch models. This study also explores the effect of different data discretization methods on scale…
Descriptors: Models, Measurement Techniques, Benchmarking, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Axel Langner; Lea Sophie Hain; Nicole Graulich – Journal of Chemical Education, 2025
Often, eye-tracking researchers define areas of interest (AOIs) to analyze eye-tracking data. Although AOIs can be defined with systematic methods, researchers in organic chemistry education eye-tracking research often define them manually, as the semantic composition of the stimulus must be considered. Still, defining appropriate AOIs during data…
Descriptors: Organic Chemistry, Science Education, Eye Movements, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mirjam Sophia Glessmer; Rachel Forsyth – Teaching & Learning Inquiry, 2025
Generative AI tools (GenAI) are increasingly used for academic tasks, including qualitative data analysis for the Scholarship of Teaching and Learning (SoTL). In our practice as academic developers, we are frequently asked for advice on whether this use for GenAI is reliable, valid, and ethical. Since this is a new field, we have not been able to…
Descriptors: Artificial Intelligence, Research Methodology, Data Analysis, Scholarship
Peer reviewed Peer reviewed
Direct linkDirect link
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Wenchao Ma; Miguel A. Sorrel; Xiaoming Zhai; Yuan Ge – Journal of Educational Measurement, 2024
Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual-purpose model for simultaneously estimating students' overall ability and the presence and absence of…
Descriptors: Models, Misconceptions, Diagnostic Tests, Ability
He, Dan – ProQuest LLC, 2023
This dissertation examines the effectiveness of machine learning algorithms and feature engineering techniques for analyzing process data and predicting test performance. The study compares three classification approaches and identifies item-specific process features that are highly predictive of student performance. The findings suggest that…
Descriptors: Artificial Intelligence, Data Analysis, Algorithms, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Shuanghong Shen; Qi Liu; Zhenya Huang; Yonghe Zheng; Minghao Yin; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In…
Descriptors: Student Behavior, Electronic Learning, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Qiuping Peng; Ningfei Wei – International Journal of Information and Communication Technology Education, 2024
In the context of college physical education curriculum reform, fostering students' interest and promoting lifelong physical exercise have become crucial. Aerobics, an integral component of physical education, plays a key role in achieving these objectives. However, existing data flow analysis technologies lack integration, limiting their ability…
Descriptors: College Students, Physical Education, Exercise, Dance
Peer reviewed Peer reviewed
Direct linkDirect link
Nicole Maestas; Tisamarie B. Sherry; Alexander Strand – Journal of Disability Policy Studies, 2024
Opioid use is common among Social Security Disability Insurance (SSDI) beneficiaries, who account for a disproportionate share of opioid-related hospitalizations and mortality in the United States. However, little is known about the prevalence of opioid use prior to SSDI enrollment. Understanding when opioid use is established and how it…
Descriptors: Drug Use, Narcotics, Welfare Services, Insurance
Peer reviewed Peer reviewed
Direct linkDirect link
Erickson, Tim; Engel, Joachim – Teaching Statistics: An International Journal for Teachers, 2023
This volume is largely about nontraditional data; this paper is about a nontraditional visualization: classification trees. Using trees with data will be new to many students, so rather than beginning with a computer algorithm that produces optimal trees, we suggest that students first construct their own trees, one node at a time, to explore how…
Descriptors: Classification, Data Analysis, Visual Aids, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Suleyman Alpaslan Sulak; Nigmet Koklu – European Journal of Education, 2024
This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales--depression, anxiety and stress--each consisting of 14 items.…
Descriptors: Foreign Countries, Algorithms, Information Retrieval, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5