Publication Date
In 2025 | 4 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 22 |
Since 2016 (last 10 years) | 86 |
Descriptor
Source
Author
Barnes, Tiffany | 6 |
Liu, Ran | 5 |
Chi, Min | 4 |
Stamper, John | 4 |
Davenport, Jodi | 3 |
Mostafavi, Behrooz | 3 |
Barnes, Tiffany, Ed. | 2 |
Feng, Mingyu, Ed. | 2 |
Gross, Markus | 2 |
Haimson, Joshua | 2 |
Ifenthaler, Dirk, Ed. | 2 |
More ▼ |
Publication Type
Education Level
Audience
Location
Pennsylvania (Pittsburgh) | 4 |
Australia | 3 |
Germany | 3 |
Italy | 3 |
Japan | 3 |
North Carolina | 3 |
South Africa | 3 |
Taiwan | 3 |
Turkey | 3 |
Brazil | 2 |
China | 2 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 2 |
Individuals with Disabilities… | 2 |
Rehabilitation Act 1973… | 2 |
Assessments and Surveys
National Longitudinal… | 2 |
ACT Assessment | 1 |
Gates MacGinitie Reading Tests | 1 |
Rosenberg Self Esteem Scale | 1 |
What Works Clearinghouse Rating
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Danielle S. McNamara – Grantee Submission, 2024
Our primary objective in this Special Issue was to respond to potential criticisms of AIED in potentially "perpetuating poor pedagogic practices, datafication, and introducing classroom surveillance" and to comment on the future of AIED in its coming of age. My overarching assumption in response to this line of critiques is that humans…
Descriptors: Educational Practices, Educational Quality, Intelligent Tutoring Systems, Artificial Intelligence
Xiner Liu; Andres Felipe Zambrano; Ryan S. Baker; Amanda Barany; Jaclyn Ocumpaugh; Jiayi Zhang; Maciej Pankiewicz; Nidhi Nasiar; Zhanlan Wei – Journal of Learning Analytics, 2025
This study explores the potential of the large language model GPT-4 as an automated tool for qualitative data analysis by educational researchers, exploring which techniques are most successful for different types of constructs. Specifically, we assess three different prompt engineering strategies -- Zero-shot, Few-shot, and Fewshot with…
Descriptors: Coding, Artificial Intelligence, Automation, Data Analysis
Yang, Chunsheng; Chiang, Feng-Kuang; Cheng, Qiangqiang; Ji, Jun – Journal of Educational Computing Research, 2021
Machine learning-based modeling technology has recently become a powerful technique and tool for developing models for explaining, predicting, and describing system/human behaviors. In developing intelligent education systems or technologies, some research has focused on applying unique machine learning algorithms to build the ad-hoc student…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Data Use, Models
Tonya Stewart-Magee – ProQuest LLC, 2024
This quantitative, causal-comparative study aims to examine the academic performance of all third-grade students who participated in after-school tutoring from English Language Arts (ELA) in comparison to those who did not, using the results from the 2022-2023 Mississippi Academic Assessment Program English Language Arts (MAAP ELA) assessment. The…
Descriptors: Grade 3, Elementary School Students, Tutoring, Language Arts
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Caspari-Sadeghi, Sima – Journal of Educational Technology Systems, 2023
Intelligent assessment, the core of any AI-based educational technology, is defined as embedded, stealth and ubiquitous assessment which uses intelligent techniques to diagnose the current cognitive level, monitor dynamic progress, predict success and update students' profiling continuously. It also uses various technologies, such as learning…
Descriptors: Artificial Intelligence, Educational Technology, Computer Assisted Testing, Barriers
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Hwang, Gwo-Jen; Tu, Yun-Fang; Tang, Kai-Yu – International Review of Research in Open and Distributed Learning, 2022
This study reviews the journal publications of artificial intelligence-supported online learning (AIoL) in the Web of Science (WOS) database from 1997 to 2019 taking into account the contributing countries/areas, leading journals, highly cited papers, authors, research areas, research topics, roles of AIoL, and adopted artificial intelligence (AI)…
Descriptors: Artificial Intelligence, Electronic Learning, Educational Research, Data Analysis
Dang, Steven C.; Koedinger, Kenneth R. – International Educational Data Mining Society, 2020
Effective teachers recognize the importance of transitioning students into learning activities for the day and accounting for the natural drift of student attention while creating lesson plans. In this work, we analyze temporal patterns of gaming behaviors during work on an intelligent tutoring system with a broader goal of detecting temporal…
Descriptors: Learner Engagement, Intelligent Tutoring Systems, Student Behavior, Student Motivation
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Chaudhry, Ritwick; Singh, Harvineet; Dogga, Pradeep; Saini, Shiv Kumar – International Educational Data Mining Society, 2018
Interactive learning environments facilitate learning by providing hints to fill the gaps in the understanding of a concept. Studies suggest that hints are not used optimally by learners. Either they are used unnecessarily or not used at all. It has been shown that learning outcomes can be improved by providing hints when needed. An effective…
Descriptors: Student Behavior, Prediction, Models, Intelligent Tutoring Systems
du Boulay, Benedict – British Journal of Educational Technology, 2019
Intelligent Tutoring systems (ITSs) and Intelligent Learning Environments (ILEs) have been developed and evaluated over the last 40 years. Recent meta-analyses show that they perform well enough to act as effective classroom assistants under the guidance of a human teacher. Despite this success, they have been criticised as embodying a retrograde…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Meta Analysis, Artificial Intelligence