Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 11 |
Descriptor
Error of Measurement | 11 |
Markov Processes | 11 |
Bayesian Statistics | 8 |
Monte Carlo Methods | 8 |
Computation | 4 |
Models | 4 |
Item Response Theory | 3 |
Maximum Likelihood Statistics | 3 |
Sample Size | 3 |
Statistical Bias | 3 |
Causal Models | 2 |
More ▼ |
Source
Journal of Educational and… | 4 |
Educational and Psychological… | 3 |
Grantee Submission | 2 |
Journal of Educational… | 1 |
Sociological Methods &… | 1 |
Author
Aki Vehtari | 1 |
Anders Hjorth-Trolle | 1 |
Anders Holm | 1 |
Andrew Gelman | 1 |
Baram, Tallie Z. | 1 |
Bartolucci, Francesco | 1 |
Bob Carpenter | 1 |
Bolin, Jocelyn H. | 1 |
Carnegie, Nicole Bohme | 1 |
Daniel Simpson | 1 |
Davis, Elysia Poggi | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Anders Holm; Anders Hjorth-Trolle; Robert Andersen – Sociological Methods & Research, 2025
Lagged dependent variables (LDVs) are often used as predictors in ordinary least squares (OLS) models in the social sciences. Although several estimators are commonly employed, little is known about their relative merits in the presence of classical measurement error and different longitudinal processes. We assess the performance of four commonly…
Descriptors: Elementary Education, Scores, Error of Measurement, Predictor Variables
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Rank-Normalization, Folding, and Localization: An Improved [R-Hat] for Assessing Convergence of MCMC
Aki Vehtari; Andrew Gelman; Daniel Simpson; Bob Carpenter; Paul-Christian Burkner – Grantee Submission, 2021
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic [R-hat] of Gelman and Rubin (1992) has serious flaws. Traditional [R-hat] will fail to correctly diagnose convergence failures…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Efficiency
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Li, Tongyun; Jiao, Hong; Macready, George B. – Educational and Psychological Measurement, 2016
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Descriptors: Item Response Theory, Psychometrics, Test Construction, Monte Carlo Methods
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability