Publication Date
In 2025 | 2 |
Since 2024 | 14 |
Since 2021 (last 5 years) | 28 |
Since 2016 (last 10 years) | 29 |
Descriptor
Algorithms | 29 |
Identification | 29 |
Artificial Intelligence | 18 |
Accuracy | 13 |
At Risk Students | 10 |
Prediction | 10 |
Classification | 8 |
Learning Analytics | 8 |
Models | 6 |
Comparative Analysis | 5 |
Computer Software | 5 |
More ▼ |
Source
Author
Abdelhadi Raihani | 1 |
Adam Fleischhacker | 1 |
Aleksandra Maslennikova | 1 |
Anagha Vaidya | 1 |
Anna Monreale | 1 |
Arthur Bakker | 1 |
Austin Wyman | 1 |
Ben Soussia, Amal | 1 |
Bouchaib Cherradi | 1 |
Boyer, Anne | 1 |
Chen, Guanhua | 1 |
More ▼ |
Publication Type
Journal Articles | 24 |
Reports - Research | 22 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 3 | 1 |
Primary Education | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pu Wang; Yifeng Lin; Tiesong Zhao – Education and Information Technologies, 2025
With the emergence of Artificial Intelligence (AI), smart education has become an attractive topic. In a smart education system, automated classrooms and examination rooms could help reduce the economic cost of teaching, and thus improve teaching efficiency. However, existing AI algorithms suffer from low surveillance accuracies and high…
Descriptors: Supervision, Artificial Intelligence, Technology Uses in Education, Automation
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Ranger, Jochen; Schmidt, Nico; Wolgast, Anett – Educational and Psychological Measurement, 2023
Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this…
Descriptors: Identification, Cheating, Information Retrieval, Tests
Daniel J. Carragher; Daniel Sturman; Peter J. B. Hancock – Cognitive Research: Principles and Implications, 2024
The human face is commonly used for identity verification. While this task was once exclusively performed by humans, technological advancements have seen automated facial recognition systems (AFRS) integrated into many identification scenarios. Although many state-of-the-art AFRS are exceptionally accurate, they often require human oversight or…
Descriptors: Automation, Human Body, Man Machine Systems, Accuracy
Lian June Arzbecker – ProQuest LLC, 2023
This dissertation explores the relationship between quantitative phonetic measurements and listener identification of accents of English, focusing on phonetic distance and its perceptual correlates across various English accent varieties. The Levenshtein distance (LD) measure, which quantifies string similarity by calculating the minimum cost of…
Descriptors: Dialects, Pronunciation, Phonetics, Auditory Perception
Wei Li; Walter Leite; Jia Quan – Society for Research on Educational Effectiveness, 2023
Background: Multilevel randomized controlled trials (MRCTs) have been widely used to evaluate the causal effects of educational interventions. Traditionally, educational researchers and policymakers focused on the average treatment effects (ATE) of the intervention. Recently there has been an increasing interest in evaluating the heterogeneity of…
Descriptors: Artificial Intelligence, Identification, Hierarchical Linear Modeling, Randomized Controlled Trials
Anagha Vaidya; Sarika Sharma – Interactive Technology and Smart Education, 2024
Purpose: Course evaluations are formative and are used to evaluate learnings of the students for a course. Anomalies in the evaluation process can lead to a faulty educational outcome. Learning analytics and educational data mining provide a set of techniques that can be conveniently applied to extensive data collected as part of the evaluation…
Descriptors: Course Evaluation, Learning Analytics, Formative Evaluation, Information Retrieval
Zhipeng Hou; Elizabeth Tipton – Research Synthesis Methods, 2024
Literature screening is the process of identifying all relevant records from a pool of candidate paper records in systematic review, meta-analysis, and other research synthesis tasks. This process is time consuming, expensive, and prone to human error. Screening prioritization methods attempt to help reviewers identify most relevant records while…
Descriptors: Meta Analysis, Research Reports, Identification, Evaluation Methods
Kearney, Christopher A.; Childs, Joshua – Improving Schools, 2023
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel…
Descriptors: Data Analysis, Attendance, Educational Policy, Causal Models
Liu, Zhi; Kong, Xi; Chen, Hao; Liu, Sannyuya; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
In a massive open online courses (MOOCs) learning environment, it is essential to understand students' social knowledge constructs and critical thinking for instructors to design intervention strategies. The development of social knowledge constructs and critical thinking can be represented by cognitive presence, which is a primary component of…
Descriptors: MOOCs, Cognitive Processes, Students, Models
Cingillioglu, Ilker – International Journal of Information and Learning Technology, 2023
Purpose: With the advent of ChatGPT, a sophisticated generative artificial intelligence (AI) tool, maintaining academic integrity in all educational settings has recently become a challenge for educators. This paper discusses a method and necessary strategies to confront this challenge. Design/methodology/approach: In this study, a language model…
Descriptors: Artificial Intelligence, Essays, Integrity, Cheating
Houssam El Aouifi; Mohamed El Hajji; Youssef Es-Saady – Education and Information Technologies, 2024
Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions' reputation and funding. Dropout can occur for a variety of reasons, including academic, financial,…
Descriptors: At Risk Students, Potential Dropouts, Identification, Influences
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Eegdeman, Irene; Cornelisz, Ilja; Meeter, Martijn; van Klaveren, Chris – Education Economics, 2023
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for…
Descriptors: Foreign Countries, Vocational Schools, Dropout Characteristics, Dropout Prevention
Previous Page | Next Page »
Pages: 1 | 2