Publication Date
In 2025 | 0 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 23 |
Since 2016 (last 10 years) | 54 |
Descriptor
Source
Author
Publication Type
Journal Articles | 53 |
Reports - Research | 30 |
Reports - Descriptive | 20 |
Reports - Evaluative | 3 |
Dissertations/Theses -… | 1 |
Guides - Classroom - Teacher | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 33 |
Postsecondary Education | 26 |
Secondary Education | 4 |
High Schools | 3 |
Grade 11 | 1 |
Grade 9 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Two Year Colleges | 1 |
Audience
Teachers | 3 |
Researchers | 1 |
Students | 1 |
Location
Arizona | 1 |
Brazil | 1 |
Colorado (Boulder) | 1 |
Georgia | 1 |
Illinois | 1 |
Indonesia | 1 |
Italy | 1 |
Maryland (Baltimore) | 1 |
Michigan | 1 |
Missouri | 1 |
Morocco | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip P. Lampkin; Angie E. Xu; Brian J. Esselman; Cara E. Schwarz; Sebastian D. Thompson; Samuel H. Gellman; Nicholas J. Hill – Journal of Chemical Education, 2024
Synthesis of (Z)-alkenes is challenging because the (E) stereoisomers are usually more stable. Energy transfer photocatalysis has emerged as an efficient strategy for (E) [right arrow] (Z) alkene isomerization. We report the development of an advanced undergraduate laboratory experiment that introduces students to contemporary organic…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Synthesis
Jacob Jan Markut; Jordi Cabana; Neal P. Mankad; Donald J. Wink – Journal of Chemical Education, 2023
A symmetry activity using student-built models was developed in line with faculty-developed pedagogical goals and a collaborative learning framework. The activity took place in a 3-h laboratory portion of an upper-division inorganic chemistry course. It required students to identify symmetry elements for seven molecules using common 2D…
Descriptors: Models, Inorganic Chemistry, Science Activities, Science Instruction
Mahaveer Genwa; Jyoti Singh; Sunny Manohar; Chetna Angrish – Journal of Chemical Education, 2023
The analysis of functional groups in organic compounds and inorganic ions in salts is a laboratory experiment that forms an inevitable part of the undergraduate chemistry curriculum in the science field all over the world. With this experiment, the student learns the testing techniques for the chemicals and gets a true sense of the importance of…
Descriptors: Organic Chemistry, Science Instruction, Pollution, Laboratory Experiments
Esselman, Brian J.; Hill, Nicholas J.; Ellison, Aubrey J. – Journal of Chemical Education, 2021
The acid-catalyzed dehydration of regioisomeric methylcyclohexanols is a classic organic chemistry experiment featured in a variety of laboratory textbooks and literature. The mechanistic details of this reaction have received an inconsistent and occasionally inaccurate treatment, wherein the reaction has been described as a mix of E1, E2-like,…
Descriptors: Organic Chemistry, Laboratory Experiments, Models, Thermodynamics
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Kilde Löfgren, Sebastian; Weidow, Jonathan; Enger, Jonas – Science Education, 2023
The creation and use of models in science is of great importance for knowledge production and communication. For example, toy models are often used as idealized explanatory models in physics education. Models can be a powerful tool for exploring phenomena in ways that facilitate learning. However, careful consideration of instruction and…
Descriptors: Physics, Science Instruction, Laboratory Experiments, Learning Processes
Blagotinšek, Ana Gostincar – Physics Teacher, 2023
Two misconceptions about the mechanism of image formation in the human eye are common among students and even in textbooks and other teaching materials. The first attributes all refraction to the eye lens; the second treats the eye as a pinhole camera. To reduce these persistent conceptions of students, a series of simple experiments is presented…
Descriptors: Vision, Science Instruction, Instructional Materials, Laboratory Experiments
Jordan P. Beck; Diane M. Miller – Journal of Chemical Education, 2022
A version of the classic rotationally resolved infrared (IR) spectrum of a diatomic molecule experiment has been developed using the POGIL framework to more fully engage students in the collection, modeling, analysis, and interpretation of the data. An analysis of the experimental protocol reveals that the POGIL approach actively engages students…
Descriptors: Learner Engagement, Chemistry, Science Instruction, Laboratory Experiments
Sarah E. Shaner; Kari L. Stone – Journal of Chemical Education, 2023
A Fourier transform infrared (FTIR) experiment appropriate for an upper-level undergraduate laboratory such as chemical instrumentation is described. Students collect FTIR spectra of four protio-solvents and their deuterated analogues. In addition to qualitatively observing C-H and O-H peaks shift to lower energy upon deuteration, students apply a…
Descriptors: Undergraduate Students, Spectroscopy, Chemistry, Science Instruction
Adrienne M. Pesce; Daniel B. King – Journal of Chemical Education, 2023
Novice chemists often struggle with the highly visual nature of some chemistry topics. To make visually demanding concepts, such as isomerism and stereochemistry, more accessible to students, chemistry instructors have long recommended the use of molecular model kits as visual aids. However, studies pertaining to student model usage have shown…
Descriptors: Student Attitudes, Molecular Structure, Science Teachers, Science Instruction
Oliveira, Karol N.; Naujorks, Amanda C.; Freitas, Welica P. S.; Goncalves, Alem-Mar B.; Calheiro, Lisiane B. – Journal of Chemical Education, 2021
The use of radioactive isotopes in radioactive decay studies can be a problem due to the manipulation of radioisotopes, expensive equipment, and the difficulty of finding samples with a reasonable half-life (between 1 and 10 min). In this paper, we present a mock-up of a Geiger-Mu¨ller counter plus three fictitious radioisotopes. They form an…
Descriptors: Printing, Computer Peripherals, Models, Simulation
Gyeong-Geon Lee; Hun-Gi Hong – Educational Technology Research and Development, 2024
The COVID-19 pandemic has compelled innovations in science teaching and learning, such as blending online sessions with conventional face-to-face classes. We developed and validated the Blended Laboratory and E-learning iNstructional Design (BLEND) model for university-level remote laboratory sessions (RLS) to respond to the fluctuating…
Descriptors: COVID-19, Pandemics, Educational Innovation, Blended Learning
Luke A. Wilczek; Alannah J. Clarke; Maria del Carmen Guerrero Martinez; Jesse B. Morin – Journal of Chemical Education, 2022
To remain globally competitive, education in the United States must focus on retaining students in science, technology, engineering, and mathematics (STEM). As laboratory courses have the potential to be powerful attractors or deterrents to a field, developing effective laboratory pedagogies is important to retain students in STEM. A course-based…
Descriptors: Organic Chemistry, Science Instruction, Teaching Methods, Student Research
Jared P. Canright; Suzanne White Brahmia – Physical Review Physics Education Research, 2024
We report on a study of the effects of laboratory activities that model fictitious laws of physics in a virtual reality environment on (i) students' epistemology about the role of experimental physics in class and in the world; (ii) students' self-efficacy; and (iii) the quality of student engagement with the lab activities. We create…
Descriptors: Physics, Science Instruction, Self Efficacy, Computer Simulation
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles