NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20241
Since 2021 (last 5 years)5
Since 2016 (last 10 years)10
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Vasconcelos, Lucas; Kim, ChanMin – Educational Technology Research and Development, 2020
Learning standards for K-12 science education emphasize the importance of engaging students in practices that scientists perform in their profession. K-12 teachers are expected to engage students in scientific modeling, which entails constructing, testing, evaluating, and revising their own models of science phenomena while pursuing an epistemic…
Descriptors: Coding, Science Education, Science Instruction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Metcalf, Shari J.; Reilly, Joseph M.; Jeon, Soobin; Wang, Annie; Pyers, Allyson; Brennan, Karen; Dede, Chris – Computer Science Education, 2021
Background and Context: This study looks at computational thinking (CT) assessment of programming artifacts within the context of CT integrated with science education through computational modeling. Objective: The goal is to explore methodologies for assessment of student-constructed computational models through two lenses: functionality and…
Descriptors: Evaluation Methods, Computation, Thinking Skills, Science Education
Xiaoyi Tian – ProQuest LLC, 2024
As Artificial Intelligence (AI) becomes increasingly ubiquitous in society, conversational agents such as Siri, Alexa, and ChatGPT are shaping the experiences of younger generations. However, these young users often lack opportunities to learn about the inner workings of these AI technologies. One way to foster such learning is by empowering…
Descriptors: Artificial Intelligence, Technology Uses in Education, Access to Computers, Access to Education
Peer reviewed Peer reviewed
Direct linkDirect link
Thrall, Elizabeth S.; Lee, Seung Eun; Schrier, Joshua; Zhao, Yijun – Journal of Chemical Education, 2021
Techniques from the branch of artificial intelligence known as machine learning (ML) have been applied to a wide range of problems in chemistry. Nonetheless, there are very few examples of pedagogical activities to introduce ML to chemistry students in the chemistry education literature. Here we report a computational activity that introduces…
Descriptors: Undergraduate Students, Artificial Intelligence, Man Machine Systems, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Svensson, Kim; Eriksson, Urban; Pendrill, Ann-Marie – Physical Review Physics Education Research, 2020
A small group of interested upper secondary education students participated in a workshop where they created a particle-based physics engine and used the engine to implement a hanging cloth simulation and a two-dimensional heat diffusion model of their own creation. During the implementation of their models, learning opportunities present…
Descriptors: Foreign Countries, Physics, Science Education, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Sáez-López, José-Manuel; Sevillano-García, Maria-Luisa; Vazquez-Cano, Esteban – Educational Technology Research and Development, 2019
This study highlights the importance of an educational design that includes robotics and programming through a visual programming language as a means to enable students to improve substantially their understanding of the elements of logic and mathematics. Gaining an understanding of computational concepts as well as a high degree of student…
Descriptors: Elementary School Students, Programming, Programming Languages, Robotics
Peer reviewed Peer reviewed
Direct linkDirect link
Enderle, Patrick; King, Natalie; Margulieux, Lauren – Science Teacher, 2021
Teaching about wave structure and function is a critical element of any physical science curriculum and supported by "Next Generation Science Standards (NGSS)" PS4: Waves and Their Applications in Technologies for Information Transfer. To support students' learning of these ideas, teachers often rely on developing graphic models of a…
Descriptors: Science Education, Standards, Teaching Methods, Science Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Lila; Moreno, Celeste; Shapiro, R. Benjamin – Cognition and Instruction, 2021
Creating learning environments that integrate arts, sciences, and computing in education can improve learning in these disciplines. In particular, transdisciplinary integrations of these disciplines can lead to expansive alterations or dissolutions of epistemological, ideological, and methodological boundaries. We wish to support teachers in the…
Descriptors: Interdisciplinary Approach, Learning Processes, Thinking Skills, Epistemology
Peer reviewed Peer reviewed
Direct linkDirect link
Angeli, Charoula M.; Jaipal-Jamani, Kamini – AERA Online Paper Repository, 2017
In an era where computational thinking is regarded as a basic skill for the 21st century that needs to be taught across the K-12 curriculum, research shows that teacher education programs do not adequately prepare preservice teachers to promote computational thinking skills in classroom teaching. Accordingly, the present study contributes to the…
Descriptors: Scaffolding (Teaching Technique), Programming, Robotics, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Narasimharao, B. Pandu, Ed.; Wright, Elizabeth, Ed.; Prasad, Shashidhara, Ed.; Joshi, Meghana, Ed. – IGI Global, 2017
Higher education institutions play a vital role in their surrounding communities. Besides providing a space for enhanced learning opportunities, universities can utilize their resources for social and economic interests. The "Handbook of Research on Science Education and University Outreach as a Tool for Regional Development" is a…
Descriptors: Science Education, Guides, Outreach Programs, School Community Relationship