Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Descriptor
Algorithms | 5 |
Statistical Distributions | 5 |
Sampling | 3 |
Artificial Intelligence | 2 |
Bayesian Statistics | 2 |
Models | 2 |
Monte Carlo Methods | 2 |
Statistical Inference | 2 |
Arithmetic | 1 |
College Admission | 1 |
Computation | 1 |
More ▼ |
Author
Alex Lyford | 1 |
Arthur Bakker | 1 |
Gelman, Andrew | 1 |
Hedges, Larry V. | 1 |
Lonneke Boels | 1 |
Muhammad Aslam | 1 |
Natesan, Prathiba | 1 |
Paul Drijvers | 1 |
Rodriguez, AE | 1 |
Rosen, John | 1 |
Vehtari, Aki | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 4 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Muhammad Aslam – Measurement: Interdisciplinary Research and Perspectives, 2025
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for…
Descriptors: Statistical Distributions, Algorithms, Sampling
Lonneke Boels; Alex Lyford; Arthur Bakker; Paul Drijvers – Frontline Learning Research, 2023
Many students persistently misinterpret histograms. Literature suggests that having students solve dotplot items may prepare for interpreting histograms, as interpreting dotplots can help students realize that the statistical variable is presented on the horizontal axis. In this study, we explore a special case of this suggestion, namely, how…
Descriptors: Data Interpretation, Interpretive Skills, Statistical Distributions, Graphs
Rodriguez, AE; Rosen, John – Research in Higher Education Journal, 2023
The various empirical models built for enrollment management, operations, and program evaluation purposes may have lost their predictive power as a result of the recent collective impact of COVID restrictions, widespread social upheaval, and the shift in educational preferences. This statistical artifact is known as model drifting, data-shift,…
Descriptors: Models, Enrollment Management, School Holding Power, Data
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models