Publication Date
In 2025 | 3 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 45 |
Since 2016 (last 10 years) | 46 |
Descriptor
Source
Author
Publication Type
Journal Articles | 46 |
Reports - Descriptive | 24 |
Reports - Research | 20 |
Tests/Questionnaires | 6 |
Reports - Evaluative | 2 |
Guides - Classroom - Teacher | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Location
Germany | 2 |
California | 1 |
District of Columbia | 1 |
North Carolina (Durham) | 1 |
Pennsylvania | 1 |
Spain | 1 |
United Kingdom (Scotland) | 1 |
Wisconsin | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jorge N. Tendeiro; Rink Hoekstra; Tsz Keung Wong; Henk A. L. Kiers – Teaching Statistics: An International Journal for Teachers, 2025
Most researchers receive formal training in frequentist statistics during their undergraduate studies. In particular, hypothesis testing is usually rooted on the null hypothesis significance testing paradigm and its p-value. Null hypothesis Bayesian testing and its so-called Bayes factor are now becoming increasingly popular. Although the Bayes…
Descriptors: Statistics Education, Teaching Methods, Programming Languages, Bayesian Statistics
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
Jon-Paul Paolino – Teaching Statistics: An International Journal for Teachers, 2024
This article presents a novel approach to introducing principal component analysis (PCA), using summary tables and descriptive statistics. Given its applicability across a variety of academic disciplines, this topic offers abundant opportunity for class discussion and activities. However, teaching PCA in an introductory class can be challenging…
Descriptors: Statistics Education, Factor Analysis, Teaching Methods, Introductory Courses
Jule Scheper; Robin Leuppert; Daniel Possler; Anna Freytag; Sophie Bruns; Julia Niemann-Lenz – Journalism and Mass Communication Educator, 2025
Despite the increasing use of the statistical programming language R in statistics and data analysis (SDA), its implementation in communication science education is limited. Experiences, recommendations, and a critical exchange are therefore scarce. The following contribution addresses this very gap. At the Department of Journalism and…
Descriptors: Journalism Education, Programming Languages, Statistical Analysis, Data Analysis
Ainsley Miller; Kate Pyper – Journal of Statistics and Data Science Education, 2024
R is becoming the standard for teaching statistics due to its flexibility, and open-source nature, replacing software programs like Minitab and SPSS. The main driver for reform within Scottish statistical undergraduate programs is the creation of the Scottish Qualification Authority's Higher Applications of Mathematics course which has statistics…
Descriptors: College Freshmen, Undergraduate Study, Anxiety, Programming Languages
Allison S. Theobold; Megan H. Wickstrom; Stacey A. Hancock – Journal of Statistics and Data Science Education, 2024
Despite the elevated importance of Data Science in Statistics, there exists limited research investigating how students learn the computing concepts and skills necessary for carrying out data science tasks. Computer Science educators have investigated how students debug their own code and how students reason through foreign code. While these…
Descriptors: Computer Science Education, Coding, Data Science, Statistics Education
Amelia McNamara – Journal of Statistics and Data Science Education, 2024
When incorporating programming into a statistics course, there are many pedagogical considerations. In R, one consideration is the particular R syntax used. This article reports on a head-to-head comparison of a pair of introductory statistics labs, one conducted in the formula syntax, the other in tidyverse. Pre- and post-surveys show minimal…
Descriptors: Teaching Methods, Introductory Courses, Statistics Education, Programming Languages
Alexander J. Norquist; Gabriel Jones-Thomson; Keqing He; Thomas Egg; Joshua Schrier – Journal of Chemical Education, 2023
Laboratory automation and data science are valuable new skills for all chemists, but most pedagogical activities involving automation to date have focused on upper-level coursework. Herein, we describe a combined computational and experimental lab suitable for a first-year undergraduate general chemistry course, in which these topics are…
Descriptors: Laboratory Experiments, Measurement Techniques, Chemistry, Science Instruction
Endler Marcel Borges – Journal of Chemical Education, 2023
An understanding of statistical concepts is necessary for a chemist with a complete education. Here, statistical tests were taught using the R Commander and the Factoshiny packages. These packages run on R software and have a graphical user interface (GUI), which allows students to do statistical tests quickly and easily. These packages were…
Descriptors: Statistics Education, Programming Languages, Chemistry, Science Instruction
Murray, Lori L.; Wilson, John G. – Decision Sciences Journal of Innovative Education, 2021
Summary statistics and data visualizations are often used to explore data and draw preliminary conclusions. Although valuable, these tools do not always reveal the underlying patterns and trends in the data and can sometimes be misleading. We describe an approach for teaching the need for more advanced statistical analysis using multiple linear…
Descriptors: Statistics Education, Teaching Methods, Multiple Regression Analysis, Multivariate Analysis
Christine Eith; Denise Zawada – Impacting Education: Journal on Transforming Professional Practice, 2025
This paper proposes a framework for integrating generative artificial intelligence (AI) tools into statistical training for Doctor of Education (EdD) students. The rigorous demands of doctoral education, coupled with the challenges of learning complex statistical software and coding language, often lead to anxiety and frustration among students,…
Descriptors: Doctoral Programs, Artificial Intelligence, Technology Integration, Statistics Education
Vance, Eric A. – Journal of Statistics and Data Science Education, 2021
Data science is collaborative and its students should learn teamwork and collaboration. Yet it can be a challenge to fit the teaching of such skills into the data science curriculum. Team-Based Learning (TBL) is a pedagogical strategy that can help educators teach data science better by flipping the classroom to employ small-group collaborative…
Descriptors: Cooperative Learning, Data Analysis, Statistics Education, Flipped Classroom
Katie A. McCarthy; Gregory A. Kuhlemeyer – Journal of Statistics and Data Science Education, 2024
To meet the demands of industry, undergraduate business curricula must evolve to prepare analytics-enabled professionals in fields such as finance, accounting, human resource management, and marketing. In this article, we provide a case study of developing a rigorous, integrated finance and data analytics course that was delivered using a…
Descriptors: Statistics Education, Finance Occupations, Course Content, Teaching Methods
Sharpe, J. P. – Physics Teacher, 2022
The Poisson distribution describes the probability of a certain number of events occurring in an interval of time when the occurrence of the individual events is independent of one another and the events occur with a fixed mean rate. Probably the best-known example of the Poisson distribution in the physics curriculum is the temporal distribution…
Descriptors: Physics, Science Instruction, Probability, Mathematics Skills
Çetinkaya-Rundel, Mine; Dogucu, Mine; Rummerfield, Wendy – Statistics Education Research Journal, 2022
Many data science applications involve generating questions, acquiring data and preparing it for analysis--be it exploratory, inferential, or modeling focused--and communicating findings. Most data science curricula address each of these steps as separate units in a course or as separate courses. Open-ended term projects, however, allow students…
Descriptors: Introductory Courses, Data Analysis, Statistics Education, Units of Study