Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 9 |
Descriptor
Source
| Practical Assessment,… | 9 |
Author
Publication Type
| Journal Articles | 9 |
| Reports - Descriptive | 4 |
| Reports - Research | 4 |
| Reports - Evaluative | 1 |
Education Level
| Secondary Education | 2 |
| Elementary Education | 1 |
| High Schools | 1 |
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Joyce M. W. Moonen-van Loon; Jeroen Donkers – Practical Assessment, Research & Evaluation, 2025
The reliability of assessment tools is critical for accurately monitoring student performance in various educational contexts. When multiple assessments are combined to form an overall evaluation, each assessment serves as a data point contributing to the student's performance within a broader educational framework. Determining composite…
Descriptors: Programming Languages, Reliability, Evaluation Methods, Student Evaluation
Ethan C. Brown; Mohammed A. A. Abulela – Practical Assessment, Research & Evaluation, 2025
Moderated multiple regression (MMR) has become a fundamental tool for applied researchers, since many effects are expected to vary based on other variables. However, the inherent complexity of MMR creates formidable challenges for adequately performing power analysis on interaction effects to ensure reliable and replicable research results. Prior…
Descriptors: Statistical Analysis, Multiple Regression Analysis, Models, Programming Languages
Tan, Teck Kiang – Practical Assessment, Research & Evaluation, 2023
Researchers often have hypotheses concerning the state of affairs in the population from which they sampled their data to compare group means. The classical frequentist approach provides one way of carrying out hypothesis testing using ANOVA to state the null hypothesis that there is no difference in the means and proceed with multiple comparisons…
Descriptors: Comparative Analysis, Hypothesis Testing, Statistical Analysis, Guidelines
Tan, Teck Kiang – Practical Assessment, Research & Evaluation, 2022
Power analysis based on the analytical t-test is an important aspect of a research study to determine the sample size required to detect the effect for the comparison of two means. The current paper presents a reader-friendly procedure for carrying out the t-test power analysis using the various R add-on packages. While there is a growing of R…
Descriptors: Programming Languages, Sample Size, Bayesian Statistics, Intervention
Kane Meissel; Esther S. Yao – Practical Assessment, Research & Evaluation, 2024
Effect sizes are important because they are an accessible way to indicate the practical importance of observed associations or differences. Standardized mean difference (SMD) effect sizes, such as Cohen's d, are widely used in education and the social sciences -- in part because they are relatively easy to calculate. However, SMD effect sizes…
Descriptors: Computer Software, Programming Languages, Effect Size, Correlation
Teck Kiang Tan – Practical Assessment, Research & Evaluation, 2024
The procedures of carrying out factorial invariance to validate a construct were well developed to ensure the reliability of the construct that can be used across groups for comparison and analysis, yet mainly restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian approach for carrying out the Bayesian…
Descriptors: Bayesian Statistics, Factor Analysis, Programming Languages, Reliability
Fávero, Luiz Paulo; Souza, Rafael de Freitas; Belfiore, Patrícia; Corrêa, Hamilton Luiz; Haddad, Michel F. C. – Practical Assessment, Research & Evaluation, 2021
In this paper is proposed a straightforward model selection approach that indicates the most suitable count regression model based on relevant data characteristics. The proposed selection approach includes four of the most popular count regression models (i.e. Poisson, negative binomial, and respective zero-inflated frameworks). Moreover, it…
Descriptors: Regression (Statistics), Selection, Statistical Analysis, Models
Fung, Tze-ho; Li, Wing-yi – Practical Assessment, Research & Evaluation, 2022
Rough set theory (RST) was proposed by Zdzistaw Pawlak (Pawlak,1982) as a methodology for data analysis using the notion of discernibility of objects based on their attribute values. The main advantage of using RST approach is that it does not need additional assumptions--like data distribution in statistical analysis. Besides, it provides…
Descriptors: Gifted, Metacognition, Learning Strategies, Programming Languages
Finch, Holmes – Practical Assessment, Research & Evaluation, 2022
Researchers in many disciplines work with ranking data. This data type is unique in that it is often deterministic in nature (the ranks of items "k"-1 determine the rank of item "k"), and the difference in a pair of rank scores separated by "k" units is equivalent regardless of the actual values of the two ranks in…
Descriptors: Data Analysis, Statistical Inference, Models, College Faculty

Peer reviewed
