Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 11 |
Descriptor
Source
Author
Publication Type
| Reports - Research | 9 |
| Journal Articles | 7 |
| Dissertations/Theses -… | 1 |
| Numerical/Quantitative Data | 1 |
| Reports - Evaluative | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 2 |
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Grade 3 | 1 |
| Primary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
What Works Clearinghouse Rating
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Ross, Linette P. – ProQuest LLC, 2022
One of the most serious forms of cheating occurs when examinees have item preknowledge and prior access to secure test material before taking an exam for the purpose of obtaining an inflated test score. Examinees that cheat and have prior knowledge of test content before testing may have an unfair advantage over examinees that do not cheat. Item…
Descriptors: Testing, Deception, Cheating, Identification
Çibik, Naz Fulya; Boz-Yaman, Burçak – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2022
The purpose of this paper is to integrate mathematical modeling and ecology by presenting an activity involving an authentic environmental problem, which is called "Pine Processionary Caterpillars Invasion." Adopting Mathematical Modeling and Education for Climate Action (EfCA) approaches, it was aimed to encourage pre-service teachers…
Descriptors: Mathematical Models, Ecology, Climate, Problem Solving
Ellison, George T. H. – Journal of Statistics and Data Science Education, 2021
Temporality-driven covariate classification had limited impact on: the specification of directed acyclic graphs (DAGs) by 85 novice analysts (medical undergraduates); or the risk of bias in DAG-informed multivariable models designed to generate causal inference from observational data. Only 71 students (83.5%) managed to complete the…
Descriptors: Statistics Education, Medical Education, Undergraduate Students, Graphs
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2022
Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers to better understand the efficacy of educational interventions. In practice, however, standard statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE that may exist within outcome measures. In this study, we…
Descriptors: Item Response Theory, Models, Formative Evaluation, Statistical Inference
Ding, Peng; Dasgupta, Tirthankar – Grantee Submission, 2017
Fisher randomization tests for Neyman's null hypothesis of no average treatment effects are considered in a finite population setting associated with completely randomized experiments with more than two treatments. The consequences of using the F statistic to conduct such a test are examined both theoretically and computationally, and it is argued…
Descriptors: Statistical Analysis, Statistical Inference, Causal Models, Error Patterns
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath – Journal of Speech, Language, and Hearing Research, 2019
Purpose: Speech-evoked neurophysiological responses are often collected to answer clinically and theoretically driven questions concerning speech and language processing. Here, we highlight the practical application of machine learning (ML)-based approaches to analyzing speech-evoked neurophysiological responses. Method: Two categories of ML-based…
Descriptors: Speech Language Pathology, Intervention, Communication Problems, Speech Impairments
Hofman, Abe D.; Brinkhuis, Matthieu J. S.; Bolsinova, Maria; Klaiber, Jonathan; Maris, Gunter; van der Maas, Han L. J. – Journal of Intelligence, 2020
One of the highest ambitions in educational technology is the move towards personalized learning. To this end, computerized adaptive learning (CAL) systems are developed. A popular method to track the development of student ability and item difficulty, in CAL systems, is the Elo Rating System (ERS). The ERS allows for dynamic model parameters by…
Descriptors: Teaching Methods, Computer Assisted Instruction, Difficulty Level, Individualized Instruction
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Swire, Briony; Ecker, Ullrich K. H.; Lewandowsky, Stephan – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
People frequently continue to use inaccurate information in their reasoning even after a credible retraction has been presented. This phenomenon is often referred to as the continued influence effect of misinformation. The repetition of the original misconception within a retraction could contribute to this phenomenon, as it could inadvertently…
Descriptors: Information Utilization, Familiarity, Error Correction, Misconceptions

Peer reviewed
Direct link
