NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
V. I. Romanenko; A. V. Romanenko – International Journal of Mathematical Education in Science and Technology, 2025
We present a method to compute the power series expansions of e[superscript x] ln (1 + x), sin x, and cos x without relying on mathematical analysis. Using the properties of elementary functions, we determine the coefficients of each series through the method of undetermined coefficients. We have validated our formulae through the use of…
Descriptors: Mathematics, Computation, Mathematical Formulas, Numbers
Peer reviewed Peer reviewed
Direct linkDirect link
Jeffrey P. Smith – Mathematics Teacher: Learning and Teaching PK-12, 2023
A group of eighth-graders was presented with a two-day lab exploring graph theory as an enrichment experience. With the school's winter break looming, students were weary of solving linear equations, and this topic was intended to inject some new life into the classroom. In addition to learning about a completely new topic, they would be exposed…
Descriptors: Grade 8, Mathematics Education, Graphs, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, David M.; Walters, Gage S. – International Journal of Mathematical Education in Science and Technology, 2021
The purpose of this article is to provide an explicit formula for the bounds of integration of the regular simplex centred at the origin. Furthermore, this article rigorously proves that these integration bounds recover the volume of the regular simplex. To the authors' knowledge, this is the first time that such integration bounds have been…
Descriptors: Mathematics Instruction, Teaching Methods, Geometry, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Fraivert, David; Sigler, Avi; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2020
There are many problems whose solution requires proof that a quadrilateral is cyclic. The main reason for writing this paper is to offer a number of new tools for proving that a particular quadrilateral is cyclic, thus expanding the present knowledge base and ensuring that investigators in mathematics and teachers of mathematics have at their…
Descriptors: Geometric Concepts, Mathematical Logic, Validity, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Nystedt, Patrik – International Journal of Mathematical Education in Science and Technology, 2021
We use Taylor's formula with Lagrange remainder to prove that functions with bounded second derivative are rectifiable in the case when polygonal paths are defined by interval subdivisions which are equally spaced. As a means for generating interesting examples of exact arc length calculations in calculus courses, we recall two large classes of…
Descriptors: Mathematical Formulas, Mathematics Instruction, Calculus, Equations (Mathematics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Muhammad, Adhraa M.; Ayal, A. M. – International Electronic Journal of Mathematics Education, 2019
Bernstein polynomial is one of the most valuable and attractive method used to develop numerical solution for several complex models because of its robustness to demonstrate approximation for anonymous equations. In this paper, Bernstein polynomial is proposed to present effective solution for the 2nd kind linear Volterra integral equations with…
Descriptors: Algebra, Mathematical Formulas, Equations (Mathematics), Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Nystedt, P. – International Journal of Mathematical Education in Science and Technology, 2020
We use Taylor's formula with Lagrange remainder to make a modern adaptation of Poisson's proof of a version of the fundamental theorem of calculus in the case when the integral is defined by Euler sums, that is Riemann sums with left endpoints which are equally spaced. We discuss potential benefits for such an approach in basic calculus courses.
Descriptors: Calculus, Mathematics Instruction, Mathematical Formulas, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Herzinger, K.; Kunselman, C.; Pierce, I. – International Journal of Mathematical Education in Science and Technology, 2018
Theon's ladder is an ancient method for easily approximating "n"th roots of a real number "k." Previous work in this area has focused on modifying Theon's ladder to approximate roots of quadratic polynomials. We extend this work using techniques from linear algebra. We will show that a ladder associated to the quadratic…
Descriptors: Algebra, Mathematics Instruction, Mathematical Formulas, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2018
Let R be an integral domain with quotient field F, let S be a non-empty subset of R and let n = 2 be an integer. If there exists a rational function ?: S [right arrow] F such that ?(a)[superscript n] = a for all a ? S, then S is finite. As a consequence, if F is an ordered field (for instance,[real numbers]) and S is an open interval in F, no such…
Descriptors: Numbers, Mathematics Instruction, Algebra, Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Ceuppens, Stijn; Deprez, Johan; Dehaene, Wim; De Cock, Mieke – Physical Review Physics Education Research, 2018
This study reports on the development, validation, and administration of a 48-item multiple-choice test to assess students' representational fluency of linear functions in a physics context (1D kinematics) and a mathematics context. The test includes three external representations: graphs, tables, and formulas, which result in six possible…
Descriptors: Secondary School Students, Mathematics Tests, Test Construction, Foreign Countries