NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Grantee Submission, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yixing; Levy, Roy; Yel, Nedim; Schulte, Ann C. – School Effectiveness and School Improvement, 2023
Although there is recognition that there may be differential outcomes for groups of students within schools, examination of outcomes for subgroups presents challenges to researchers and policymakers. It complicates analytic procedures, particularly when the number of students per school in the subgroup is small. We explored five alternatives for…
Descriptors: Growth Models, Hierarchical Linear Modeling, School Effectiveness, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Forthmann, Boris; Förster, Natalie; Souvignier, Elmar – Journal of Intelligence, 2022
Monitoring the progress of student learning is an important part of teachers' data-based decision making. One such tool that can equip teachers with information about students' learning progress throughout the school year and thus facilitate monitoring and instructional decision making is learning progress assessments. In practical contexts and…
Descriptors: Learning Processes, Progress Monitoring, Robustness (Statistics), Bayesian Statistics