Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Descriptor
Bayesian Statistics | 3 |
Natural Language Processing | 3 |
Prediction | 3 |
Accuracy | 2 |
Models | 2 |
Ability Grouping | 1 |
Academic Ability | 1 |
Academic Achievement | 1 |
Artificial Intelligence | 1 |
Behavior Patterns | 1 |
Certification | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Masaki Eguchi – Vocabulary Learning and Instruction, 2022
Building on previous studies investigating the multidimensional nature of lexical use in task-based L2 performance, this study clarified the roles that the distinct lexical features play in predicting vocabulary proficiency in a corpus of L2 Oral Proficiency Interviews (OPI). A total of 85 OPI samples were rated by three separate raters based on a…
Descriptors: Lexicology, Oral Language, Language Proficiency, Vocabulary Development
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics