NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Kylie L. Anglin – Annenberg Institute for School Reform at Brown University, 2025
Since 2018, institutions of higher education have been aware of the "enrollment cliff" which refers to expected declines in future enrollment. This paper attempts to describe how prepared institutions in Ohio are for this future by looking at trends leading up to the anticipated decline. Using IPEDS data from 2012-2022, we analyze trends…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kylie Anglin – AERA Open, 2024
Given the rapid adoption of machine learning methods by education researchers, and the growing acknowledgment of their inherent risks, there is an urgent need for tailored methodological guidance on how to improve and evaluate the validity of inferences drawn from these methods. Drawing on an integrative literature review and extending a…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Peer reviewed Peer reviewed
Direct linkDirect link
Herfort, Jonas Dreyøe; Tamborg, Andreas Lindenskov; Meier, Florian; Allsopp, Benjamin Brink; Misfeldt, Morten – Educational Studies in Mathematics, 2023
Mathematics education is like many scientific disciplines witnessing an increase in scientific output. Examining and reviewing every paper in an area in detail are time-consuming, making comprehensive reviews a challenging task. Unsupervised machine learning algorithms like topic models have become increasingly popular in recent years. Their…
Descriptors: Mathematics Education, Technology Uses in Education, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kerstin Wagner; Agathe Merceron; Petra Sauer; Niels Pinkwart – Journal of Educational Data Mining, 2024
In this paper, we present an extended evaluation of a course recommender system designed to support students who struggle in the first semesters of their studies and are at risk of dropping out. The system, which was developed in earlier work using a student-centered design, is based on the explainable k-nearest neighbor algorithm and recommends a…
Descriptors: At Risk Students, Algorithms, Foreign Countries, Course Selection (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Maryam Roshanaei – Education and Information Technologies, 2024
Artificial Intelligence (AI) strives to create intelligent machines with human-like abilities. However, like humans, AI can be prone to implicit biases due to flaws in data or algorithms. These biases may cause discriminatory outcomes and decrease trust in AI. Bias in higher education admission may limit access to opportunities and further social…
Descriptors: Best Practices, Algorithms, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Ni Li – International Journal of Web-Based Learning and Teaching Technologies, 2025
In depth exploration of how the pandemic has reshaped the education ecosystem over the past three years, especially in the context of the surge in demand for online education courses and learning platforms, this article focuses on the field of student ideological and political education, and innovatively constructs a moral and political education…
Descriptors: Artificial Intelligence, Computer Software, Technology Integration, Algorithms