NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Journal of Experimental Education, 2022
Experiments in psychology or education often use logistic regression models (LRMs) when analyzing binary outcomes. However, a challenge with LRMs is that results are generally difficult to understand. We present alternatives to LRMs in the analysis of experiments and discuss the linear probability model, the log-binomial model, and the modified…
Descriptors: Regression (Statistics), Monte Carlo Methods, Probability, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sooyong; Han, Suhwa; Choi, Seung W. – Educational and Psychological Measurement, 2022
Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess…
Descriptors: Test Bias, Monte Carlo Methods, Simulation, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Basman, Munevver – International Journal of Assessment Tools in Education, 2023
To ensure the validity of the tests is to check that all items have similar results across different groups of individuals. However, differential item functioning (DIF) occurs when the results of individuals with equal ability levels from different groups differ from each other on the same test item. Based on Item Response Theory and Classic Test…
Descriptors: Test Bias, Test Items, Test Validity, Item Response Theory
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Annenberg Institute for School Reform at Brown University, 2022
Analyses that reveal how treatment effects vary allow researchers, practitioners, and policymakers to better understand the efficacy of educational interventions. In practice, however, standard statistical methods for addressing Heterogeneous Treatment Effects (HTE) fail to address the HTE that may exist within outcome measures. In this study, we…
Descriptors: Item Response Theory, Models, Formative Evaluation, Statistical Inference