NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20253
Since 20247
Since 2021 (last 5 years)18
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment1
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Danielle S. McNamara – Grantee Submission, 2024
Our primary objective in this Special Issue was to respond to potential criticisms of AIED in potentially "perpetuating poor pedagogic practices, datafication, and introducing classroom surveillance" and to comment on the future of AIED in its coming of age. My overarching assumption in response to this line of critiques is that humans…
Descriptors: Educational Practices, Educational Quality, Intelligent Tutoring Systems, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Chunsheng; Chiang, Feng-Kuang; Cheng, Qiangqiang; Ji, Jun – Journal of Educational Computing Research, 2021
Machine learning-based modeling technology has recently become a powerful technique and tool for developing models for explaining, predicting, and describing system/human behaviors. In developing intelligent education systems or technologies, some research has focused on applying unique machine learning algorithms to build the ad-hoc student…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Data Use, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Caspari-Sadeghi, Sima – Journal of Educational Technology Systems, 2023
Intelligent assessment, the core of any AI-based educational technology, is defined as embedded, stealth and ubiquitous assessment which uses intelligent techniques to diagnose the current cognitive level, monitor dynamic progress, predict success and update students' profiling continuously. It also uses various technologies, such as learning…
Descriptors: Artificial Intelligence, Educational Technology, Computer Assisted Testing, Barriers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hwang, Gwo-Jen; Tu, Yun-Fang; Tang, Kai-Yu – International Review of Research in Open and Distributed Learning, 2022
This study reviews the journal publications of artificial intelligence-supported online learning (AIoL) in the Web of Science (WOS) database from 1997 to 2019 taking into account the contributing countries/areas, leading journals, highly cited papers, authors, research areas, research topics, roles of AIoL, and adopted artificial intelligence (AI)…
Descriptors: Artificial Intelligence, Electronic Learning, Educational Research, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Xu Li; Wee Hoe Tan; Yu Bin; Peng Yang; Qiancheng Yang; Taukim Xu – Education and Information Technologies, 2025
Globally, physical education curricula are progressively integrating intelligent physical education systems, a breakthrough in physical technology. These systems utilise advanced data analytic and sensing technologies, significantly enhancing the interactivity and personalisation of physical activity, thus improving students' athletic performance…
Descriptors: Undergraduate Students, Intelligent Tutoring Systems, Physical Education, Curriculum
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Morakinyo Akintolu; Akinpelu A. Oyekunle – Journal of Educators Online, 2025
This paper provides a comprehensive overview of the research on the application of artificial intelligence (AI) in primary education to explore its potential to enhance teaching and learning processes. Through a systematic review of the relevant literature, this study identifies key areas in which AI can significantly impact primary education and…
Descriptors: Data Analysis, Learning Analytics, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ipek, Ziyaeddin Halid; Gözüm, Ali Ibrahim Can; Papadakis, Stamatios; Kallogiannakis, Michail – Educational Process: International Journal, 2023
Background/purpose: ChatGPT is an artificial intelligence program released in November 2022, but even now, many studies have expressed excitement or concern about its introduction into academia and education. While there are many questions to be asked, the current study reviews the literature in order to reveal the potential effects of ChatGPT on…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Educational Benefits
Previous Page | Next Page »
Pages: 1  |  2