NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20251
Since 20245
Since 2021 (last 5 years)14
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cerullo, Enzo; Jones, Hayley E.; Carter, Olivia; Quinn, Terry J.; Cooper, Nicola J.; Sutton, Alex J. – Research Synthesis Methods, 2022
Standard methods for the meta-analysis of medical tests, without assuming a gold standard, are limited to dichotomous data. Multivariate probit models are used to analyse correlated dichotomous data, and can be extended to model ordinal data. Within the context of an imperfect gold standard, they have previously been used for the analysis of…
Descriptors: Meta Analysis, Test Format, Medicine, Standards
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Gilholm, Patricia; Mengersen, Kerrie; Thompson, Helen – Educational and Psychological Measurement, 2021
Developmental surveillance tools are used to closely monitor the early development of infants and young children. This study provides a novel implementation of a multidimensional item response model, using Bayesian hierarchical priors, to construct developmental profiles for a small sample of children (N = 115) with sparse data collected through…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Child Development
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Uwimpuhwe, Germaine; Singh, Akansha; Higgins, Steve; Coux, Mickael; Xiao, ZhiMin; Shkedy, Ziv; Kasim, Adetayo – Journal of Experimental Education, 2022
Educational stakeholders are keen to know the magnitude and importance of different interventions. However, the way evidence is communicated to support understanding of the effectiveness of an intervention is controversial. Typically studies in education have used the standardised mean difference as a measure of the impact of interventions. This…
Descriptors: Program Effectiveness, Intervention, Multivariate Analysis, Bayesian Statistics