Publication Date
In 2025 | 3 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 15 |
Descriptor
Source
Author
Benjamin L. Castleman | 2 |
Kelli A. Bird | 2 |
Yifeng Song | 2 |
Zachary Mabel | 2 |
Adam Sales | 1 |
Agus Santoso | 1 |
Carl F. Falk | 1 |
Ceccucci, Wendy | 1 |
Charlotte Z. Mann | 1 |
Darius Plikynas | 1 |
David Goretzko | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Research | 9 |
Reports - Evaluative | 3 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Two Year Colleges | 3 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 4 | 1 |
Grade 6 | 1 |
Grade 8 | 1 |
High Schools | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philipp Sterner; Florian Pargent; Dominik Deffner; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) describes the equivalence of measurement models of a construct across groups or time. When comparing latent means, MI is often stated as a prerequisite of meaningful group comparisons. The most common way to investigate MI is multi-group confirmatory factor analysis (MG-CFA). Although numerous guides exist, a recent…
Descriptors: Structural Equation Models, Causal Models, Measurement, Predictor Variables
Ken A. Fujimoto; Carl F. Falk – Educational and Psychological Measurement, 2024
Item response theory (IRT) models are often compared with respect to predictive performance to determine the dimensionality of rating scale data. However, such model comparisons could be biased toward nested-dimensionality IRT models (e.g., the bifactor model) when comparing those models with non-nested-dimensionality IRT models (e.g., a…
Descriptors: Item Response Theory, Rating Scales, Predictive Measurement, Bayesian Statistics
Leonidas Sakalauskas; Vytautas Dulskis; Darius Plikynas – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation models (DSEM) are designed for time series analysis of latent structures. Inherent to the application of DSEM is model parameter estimation, which has to be addressed in many applications by a single time series. In this context, however, the methods currently available either lack estimation quality or are…
Descriptors: Structural Equation Models, Time Management, Predictive Measurement, Data Collection
Haixiang Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Mediation analysis is an important statistical tool in many research fields, where the joint significance test is widely utilized for examining mediation effects. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its…
Descriptors: Structural Equation Models, Statistical Significance, Robustness (Statistics), Comparative Testing
Agus Santoso; Heri Retnawati; Kartianom; Ezi Apino; Ibnu Rafi; Munaya Nikma Rosyada – Open Education Studies, 2024
The world's move to a global economy has an impact on the high rate of student academic failure. Higher education, as the affected party, is considered crucial in reducing student academic failure. This study aims to construct a prediction (predictive model) that can forecast students' time to graduation in developing countries such as Indonesia,…
Descriptors: Time to Degree, Open Universities, Foreign Countries, Predictive Measurement
Vivian Chau; Valsamma Eapen; Erinn Hawkins; Jane Kohlhoff – Child & Youth Care Forum, 2025
Background: There is growing interest in research understanding the individual-specific predictors of child callous-unemotional (CU) traits, particularly in early childhood. Objective: This study reviewed evidence from studies that investigated the relationship between early child temperament factors (between 0 and 3 years) and CU traits in…
Descriptors: Children, Child Behavior, Student Behavior, Personality Traits
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Mehrnaz Amjadi – ProQuest LLC, 2021
Several daily phenomena around us can be modeled as time-evolving networks. Working with expressive and tractable models for the evolution of such networks can improve different prediction and decision-making tasks. While the literature has studied many approaches to model such networked phenomena partially, multiple gaps remain. This thesis is an…
Descriptors: Networks, Models, Graphs, Decision Making
McCarthy, Richard V.; Ceccucci, Wendy; McCarthy, Mary; Sugurmar, Nirmalkumar – Information Systems Education Journal, 2021
This case is designed to be used in business analytics courses; particularly those that emphasize predictive analytics. Students are given background information on money laundering and data from People's United Bank, a regional bank in the northeast United States. The students must develop their hypothesis, analyze the data, develop and optimize…
Descriptors: Business Administration Education, Data Analysis, Prediction, Crime
Kelli A. Bird; Benjamin L. Castleman; Zachary Mabel; Yifeng Song – AERA Open, 2021
Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of transparency by systematically comparing two…
Descriptors: At Risk Students, Identification, Two Year College Students, Community Colleges
Ethan R. Van Norman; Emily R. Forcht – Journal of Education for Students Placed at Risk, 2024
This study evaluated the forecasting accuracy of trend estimation methods applied to time-series data from computer adaptive tests (CATs). Data were collected roughly once a month over the course of a school year. We evaluated the forecasting accuracy of two regression-based growth estimation methods (ordinary least squares and Theil-Sen). The…
Descriptors: Data Collection, Predictive Measurement, Predictive Validity, Predictor Variables
Thao-Trang Huynh-Cam; Long-Sheng Chen; Tzu-Chuen Lu – Journal of Applied Research in Higher Education, 2025
Purpose: This study aimed to use enrollment information including demographic, family background and financial status, which can be gathered before the first semester starts, to construct early prediction models (EPMs) and extract crucial factors associated with first-year student dropout probability. Design/methodology/approach: The real-world…
Descriptors: Foreign Countries, Undergraduate Students, At Risk Students, Dropout Characteristics
Jaylin Lowe; Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
Recent methods have sought to improve precision in randomized controlled trials (RCTs) by utilizing data from large observational datasets for covariate adjustment. For example, consider an RCT aimed at evaluating a new algebra curriculum, in which a few dozen schools are randomly assigned to treatment (new curriculum) or control (standard…
Descriptors: Randomized Controlled Trials, Middle School Mathematics, Middle School Students, Middle Schools
Kelli A. Bird; Benjamin L. Castleman; Zachary Mabel; Yifeng Song – Annenberg Institute for School Reform at Brown University, 2021
Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of transparency by systematically comparing two…
Descriptors: At Risk Students, Higher Education, Predictive Measurement, Models
Yanagiura, Takeshi – Community College Review, 2023
Objective: This study examines how accurately a small set of short-term academic indicators can approximate long-term outcomes of community college students so that decision-makers can take informed actions based on those indicators to evaluate the current progress of large-scale reform efforts on long-term outcomes, which in practice will not be…
Descriptors: Community Colleges, Community College Students, Educational Indicators, Outcomes of Education