Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Descriptor
Hierarchical Linear Modeling | 7 |
Research Problems | 7 |
Sample Size | 5 |
Bayesian Statistics | 3 |
Multivariate Analysis | 3 |
Prediction | 3 |
Accuracy | 2 |
Computation | 2 |
Data Analysis | 2 |
Educational Research | 2 |
Models | 2 |
More ▼ |
Source
Grantee Submission | 2 |
Asia Pacific Education Review | 1 |
Journal of Experimental… | 1 |
Journal of Mixed Methods… | 1 |
Review of Educational Research | 1 |
Sociology of Education | 1 |
Author
Adrienne D. Woods | 1 |
Baek, Eunkyeng | 1 |
Bash, Kirstie L. | 1 |
Ben Van Dusen | 1 |
Benjamin Kelcey | 1 |
Brian Keller | 1 |
Chen, Siqi | 1 |
Craig Enders | 1 |
Dongho Shin | 1 |
Dung Pham | 1 |
Egamaria Alacam | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 5 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Bash, Kirstie L.; Howell Smith, Michelle C.; Trantham, Pam S. – Journal of Mixed Methods Research, 2021
The use of advanced quantitative methods within mixed methods research has been investigated in a limited capacity. In particular, hierarchical linear models are a popular approach to account for multilevel data, such as students within schools, but its use and value as the quantitative strand in a mixed methods study remains unknown. This article…
Descriptors: Hierarchical Linear Modeling, Mixed Methods Research, Research Design, Statistical Analysis