NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20251
Since 202412
Since 2021 (last 5 years)29
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy R. Konold; Elizabeth A. Sanders – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality…
Descriptors: Structural Equation Models, Reliability, Bayesian Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Karl Schweizer; Andreas Gold; Dorothea Krampen; Stefan Troche – Educational and Psychological Measurement, 2024
Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was…
Descriptors: Correlation, Factor Analysis, Measurement Techniques, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Zsuzsa Bakk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A standard assumption of latent class (LC) analysis is conditional independence, that is the items of the LC are independent of the covariates given the LCs. Several approaches have been proposed for identifying violations of this assumption. The recently proposed likelihood ratio approach is compared to residual statistics (bivariate residuals…
Descriptors: Goodness of Fit, Error of Measurement, Comparative Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbins, Ian G. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The recognition memory receiver operating characteristic (ROC) is typically asymmetric with a characteristic elevation of the left-hand portion. Whereas the unequal variance signal detection model (uvsd) assumes the asymmetry results because old item evidence is noisier than new item evidence, the dual process signal detection model (dpsd) assumes…
Descriptors: Acoustics, Recognition (Psychology), Memory, Task Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Chunyan Liu; Raja Subhiyah; Richard A. Feinberg – Applied Measurement in Education, 2024
Mixed-format tests that include both multiple-choice (MC) and constructed-response (CR) items have become widely used in many large-scale assessments. When an item response theory (IRT) model is used to score a mixed-format test, the unidimensionality assumption may be violated if the CR items measure a different construct from that measured by MC…
Descriptors: Test Format, Response Style (Tests), Multiple Choice Tests, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Christopher E. Shank – ProQuest LLC, 2024
This dissertation compares the performance of equivalence test (EQT) and null hypothesis test (NHT) procedures for identifying invariant and noninvariant factor loadings under a range of experimental manipulations. EQT is the statistically appropriate approach when the research goal is to find evidence of group similarity rather than group…
Descriptors: Factor Analysis, Goodness of Fit, Intervals, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wind, Stefanie A.; Ge, Yuan – Measurement: Interdisciplinary Research and Perspectives, 2023
In selected-response assessments such as attitude surveys with Likert-type rating scales, examinees often select from rating scale categories to reflect their locations on a construct. Researchers have observed that some examinees exhibit "response styles," which are systematic patterns of responses in which examinees are more likely to…
Descriptors: Goodness of Fit, Responses, Likert Scales, Models
Richa Ghevarghese – ProQuest LLC, 2022
Growth mixture modeling (GMM) is a methodological tool used to represent heterogeneity in longitudinal datasets through the identification of unobserved subgroups following qualitatively and quantitatively distinct trajectories in a population. These growth trajectories or functional forms are informed by the underlying developmental theory, are…
Descriptors: Monte Carlo Methods, Longitudinal Studies, Simulation, Growth Models
Zhenqiu Lu; Zhiyong Zhang – Grantee Submission, 2022
Bayesian approach is becoming increasingly important as it provides many advantages in dealing with complex data. However, there is no well-defined model selection criterion or index in a Bayesian context. To address the challenges, new indices are needed. The goal of this study is to propose new model selection indices and to investigate their…
Descriptors: Models, Goodness of Fit, Bayesian Statistics, Simulation
Previous Page | Next Page »
Pages: 1  |  2